
1 Refinement Types

This section is primarily based on Principles of Type Refinement, Noam Zeil-

berger, OPLSS 2016

The concept of refinement types is quite general. So general, in fact, that it
is not immediately obvious that the various publications claiming to present
refinment type systems are founded upon a common framework. Nonetheless,
Noam Zeilberger recently published a tutorial presenting such a framework.
Before shifting to a more historical perspective, we will examine Zeilberger’s
framework so that we understand the presented systems as refinement type
systems rather than ad-hoc ones.

Definition 1.1. Refinement type system: An extra layer of typing on an exist-
ing type system.

Remark 1.2. Type refinement systems are conservative: they preserve the
properties of the underlying type system. The framework to be presented as-
sumes the existing type system does not include subtyping.

Definition 1.3 (Type syntax).
T, S, U (types) ::= Int | Bool | T → T
ρ, π, σ (refinements) ::= rInt | rBool | ρ→ ρ

Remark 1.4. A refinement type system decomposes each base type of the
underlying system into a preordered set of base refinement types. In our example
system, these sets (rInt and rBool) happen to be lattices.

Definition 1.5 (Base refinements).

Preorder 〈 rInt, ≤Int〉 Preorder 〈 rBool, ≤Bool〉

NN NP

1Int

0Int

Z True

1Bool

False

0Bool

Remark 1.6 (Type semantics). Recall that a type T can be interpreted as a set
of closed values; e.g., JBoolK = {true, false} where true and false are values
in a term language. For distinct S and T the underlying system should have

JT K ∩ JSK = ∅.

Remark 1.7 (Form of refinement semantics). For refinement types ρ, JρK is a
pair (A,B) where

1

1. ∃S.A = JSK

2. B ⊆ A

We can think of types as non-overlapping boxes and refinements as areas inside
these boxes which “know which boxes they are in”.

Definition 1.8 (Refinement relation ρ ⊏ τ).

ρ ∈ rInt

ρ ⊏ Int

ρ ∈ rInt

ρ ⊏ Int

ρ ⊏ T π ⊏ S

ρ→ π ⊏ T → S

Remark 1.9. Induction on the derivation of ρ ⊏ T shows that ⊏ is functional :
ρ ⊏ T ∧ ρ ⊏ S ⇒ T = S.

Remark 1.10. At base types, ⊏ inuitively corresponds to the set inclusion

relation. But isn’t that what subtyping is for? Noting that R-Fun has a co-

variant left-hand premise, we see that our intuition isn’t quite correct. If ρ ⊏ S

and π ⊏ T then ρ → π identifies the set of lambdas in JS → T K which map

snd JρK into snd JπK. NN → 1Int ⊏ Int→ Int simply because NN ⊏ Int and

1Int ⊏ Int. JNN → 1IntK = (JInt→ IntK, JInt→ IntK).

ρ ⊏ T means “the purpose of ρ is to indentify a subset of JT K”.

Remark 1.11. Our payoff is a subtyping relation between refinement types.
Recall that our underlying type system has no subtyping relation and that for
distinct S and T , JSK ∩ JT K = ∅. Subtyping judgments between refinements of
distinct underlying types are therefore useless. For this reason we only consider
subtyping judgments of the form ρ <:T π, in which both ρ ⊏ T and π ⊏ T .
This inspires the mantra refinement comes before subtyping.

Definition 1.12 (Subtyping relation ρ <:T π:).

ρ ≤Int π

ρ <:Int π

ρ ≤Bool π

ρ <:Bool π

π1 <:T ρ1 ρ2 <:S π2

ρ1 → ρ2 <:T→S π1 → π2

2

Remark 1.13 (Semantic subtyping). If ρ <:T π then there exist sets X and Y
such that JρK = (JT K, X), JπK = (JT K, Y), and X ⊆ Y .

Definition 1.14 (Term syntax). t ::= x | λx : T.t | t t

Definition 1.15 (Typing relation Γ ⊢ t : T). Standard rules elided.

Definition 1.16 (Refinement contexts ∆). ∆ ::= · | ∆, x : ρ

Definition 1.17 (Context refinement ∆ ⊏ Γ). ∆ ⊏ Γ when ∆ = x1 : ρ1, ..., xn :
ρn, Γ = x1 : T1, ..., xn : Tn, and ρ1 ⊏ T1, ..., ρn ⊏ Tn.

Definition 1.18 (Refinement typing relation ∆ ⊢ t : ρ). Standard App & Var.

∆, x : π ⊢ t : ρ π ⊏ T

∆ ⊢ λx : T. t : π → ρ
abs

∆ ⊏ Γ Γ ⊢ t : T ρ, π ⊏ T Π ⊢ t : ρ ρ <:T π

∆ ⊢ t : π
sub

Definition 1.19 (Principal types). Let Γ ⊢ t : T , Π ⊏ Γ, and ρ ⊏ T . ρ is a
principal type of t under ∆ when for all π with ∆ ⊢ t : π we have ρ <:T π.

Example 1.20 (Lack of principal types). Does (λx : int. x) have a principal
type under the empty refinement context?

∅ ⊢ (λx : int. x) : 1Int → 1Int

and
∅ ⊢ (λx : int. x) : 0Int → 0Int

but any common subtype ρ → π of 1Int → 1Int and 0Int → 0Int must have
1Int <:int ρ and π <:int 0Int. The only such type is 1Int → 0Int, but

∅ 6⊢ (λx : int. x) : 1Int → 0Int

(λx : int. x) therefore has no principal type.

2 Refinement Types for ML

Freeman and Pfenning, ACM SIGPLAN 1991.

Remark 2.1. ML, Haskell, and other languages with pattern matching have a
weakness that programmers are constantly running into: it’s often reasonable
to make an assumption about a case scrutinee, the precision of which exceeds
that of the type system. Here is a simple example:

3

type List = Nil | Cons of Int * List

empty space

fun lastcons (last as Cons(hd, Nil)) = last

| lastcons (Cons(hd,tl)) = lastcons t1

The lastcons function returns the last cons of a non-empty list. But when
supplied with nil, it will raise an inexhaustive match exception. Further consider
how we might use an application of lastcons.

case lastcons y of

Cons(x,nil) => print x

A type checker for ML or Haskell would produce an “inexhaustive match”
warning for such a case expression, but examining the code we see that lastcons
only returns values matching the pattern cons(x,nil). How can we solve this
problem?

Remark 2.2. Freeman and Pfenning’s solution is to layer a refinement system
on ML’s underlying type system, in which each discriminated union data type
is decomposed into a preorder (a finite lattice in this case) of base refinements.
The structure of each lattice is user defined using an extended type definition
language.

Remark 2.3. fill in existing list type definition

type List = Nil | Cons of Int * List

rectype Sng = Cons (Int, Nil)

rectype NonEmp = Cons (Int,List)

Sng

Sng ∨ ?Nil

TopList

BotList

NonEmp

?Nil

?Nil, a list refinement denoting the singleton set containing only the value Nil,
is necessary due to the definition of Sng. We’ll soon see why it is necessary to
add the list refinement Sng ∨ ?Nil.

Remark 2.4. With our new lattice of list refinements, we can provide our list
constructors with more precise types. We start with naive refinements, inferred
from the declaration “type list = Nil | Cons of Int * List”, which add no extra
precision:

Nil : 1List

4

Cons : 1Int→List→List

The declaration “rectype single = cons (Int,Nil)“ gives

cons : Int ∗ ?Nil→ Sng

These types are then combined into intersections.

cons : (1Int→List→List) ∧ (Int ∗ ?Nil→ Sng)

Remark 2.5. The inclusion of single ∨ ?nil in our refinement lattice allows
case expressions to utilize the extra precision of refinement types. A case ex-
pression in which the scrutinee is a list is desugared into a call to a function of
the following type:

CASE list : ∀ ′a. ∀ ′ra1 :: ′a. ∀ ′ra2 :: ′a.
(Sng ∨ ?Nil) → (Unit → ′ra1) → (Int * ?Nil → ′ra2) → (′ra1 ∨

′ra2) ∧
Sng → (Unit → ′ra1) → (Int * ?Nil → ′ra2) → ′ra2 ∧
?Nil → (Unit → ′ra1) → (Int * 1list →

′ra2) → ′ra1 ∧
1list → (Unit → ′ra1) → (Int * 1list →

′ra2) → (′ra1 ∨
′ra2)

scrutinee Nil case Cons case result type

We instantiate the refinement variable ′ra1 with the type of the nil case body,
and ′ra2 with the type of the cons case body. If the scrutinee has type 1list then
we don’t know whether it was constructed with nil or cons, so the type of the
case expression (in the fourth column) must be the union of the types of the
bodies of the nil and cons cases.

Remark 2.6 (Type inference). As the complexity of rectype definitions grows,
the complexity of the types of programs written under those definitions explodes.
For this reason Freeman and Pfenning developed a type inference system based
on abstract interpretation.

3 Dependent ML

Xi, Journal of Functional Programming, 2004.

Remark 3.1. The ability to distinguish empty lists and singletons is well and
good, but it would be more useful if we could have a distinct List refinement
for every possible length. Refining base types via terms of a computationally
tractable constraint language, called an index language gives us this power. It
enables the following precise types for the append operation:

append : {n,m : int} List(m)→ List(n)→ List(n+m)

Remark 3.2. Dependent ML is parameterized over an index language. The
most practical one, which I will be using in my examples, consists of linear
arithmetic expressions over integers, constrained by inequalities. Reasoning

5

about such constraints amounts to linear integer programming which, while
NP-complete, can be solved quite efficiently in practice. The “types” of index
terms will be called sorts. Base sorts will be denoted with the metavariable s :

s (base sorts) := bool | int

The terms of our index language, denoted with the metavariable I, are alge-
braic, consisting of index variables and applications of constants. It contains
0-arity constants for int and bool literals, as well as standard arithmetic opera-
tors such as +,−, ∗,=, and >, and propositional logic operators ¬,∧, and ∨. A
constant’s sort is a multi-argument function of the form (~s)→ s.

Remark 3.3. Dependent ML provides a restricted form of dependent types,
in that types depend on index terms rather than program terms. We use ~P
to denote a constraint set (a set of index terms of sort bool) and φ to denote
a context of index variables. Subtyping and typing judgments then have the
following forms.

φ; ~P ⊢ ρ <: π and
φ; ~P ; Γ ⊢ t : ρ

Constraints, types, and terms depend on index variables.

~P
constrains
−→ φ

refined by
←− Γ, t, ρ

Example 3.4.

type List (int) = nil(0) | {n : int} cons(n+1) of Int * List(n)

Here is the Dependent ML version of our List type. It is refined using an index
term of sort int; List(n) is the List refinement corresponding to all List values
of length n. The nil constructor produces a value of type List(0), while the cons
constructor is wrapped in an index abstraction; given an index n of sort int,
a value of type Int, and a value of type List(n), cons produces a value of type
List(n+1).

Example 3.5. We now rewrite the type ascriptions of the lastcons function
into the style of Dependent ML.

fun lastcons {m : int | m > 0} (l : List(n)) : List(1) =

case l of

| cons(hd, nil) = l

| cons(hd, tl as Cons(_,_)) = lastcons tl

When type checking the base case, where l matches cons(hd, nil), we add
the index variable n : int into our index context φ. We’re assuming l has length

6

m, but cons(hd, nil) has length n + 1, so we add constraint m = n + 1 to ~P .
We expect the second argument of cons to have length n, but because it has
length 0 we add n = 0 to ~P . The body l of this case clearly has refinement type
List(n), but result has been ascribed the refinement type List(1); we therefore
require the following subtyping judgment to hold:

m : int, n : int;m > 0,m = n+ 1, n = 0 ⊢ List(n) <: List(1)

It holds due to the following inference rule:

st-sub-base

φ; ~P � I = J

φ; ~P ⊢ δ(I) <:δ δ(J)

The premise says that constraint set ~P and index terms I and J are well-sorted
under index context φ, and also that the constraint solver can prove ~P entails
I = J . The conclusion says that for any base type δ, δ-indexed-with-I is a
subtype of δ-indexed-with-J .

Remark 3.6. This rule expands the refinement types framework in some in-
teresting ways. Consider List’s preordered set of refinements 〈rList,≤List〉.
rList is the set of index terms which are well-sorted under φ, and so rList
is not static throughout the type-checking process; it is instead a function of
the sorting context φ! Also, ≤List varies with respect to φ and ~P . For ex-
ample, under m : int, n : int; ∅ we have List(m) 6≤List List(n), while under
m : int, n : int;m = n we have List(m) ≤List List(n). In Dependent ML, then,
we should not associate each base type with a preordered set, but instead a
family of preordered sets indexed by φ and ~P .

Remark 3.7. If you thought it strange that we only committed to imposing
preorders on each base type rather than partial orders or lattices, Dependent
ML shows that such generality pays off. Under any φ and ~P the refinements of
a base type are ordered by an equivalence, which is not even a partial order.

Remark 3.8. I’m now going to attempt to understand Dependent ML through
the lens of Noam’s framework. This was not discussed in the paper, but as I
mentioned earlier, I think it’s important to understand all of papers discussed
as instances of the same formal framework. Getting back to our example, the
type of the lastcons function is Π(x : int).(n > 0) ⊃ (List(n) → List(1)). It is
composed of refinement type constructors of the form Π(x : int).ρ, P ⊃ ρ, and
ρ→ ρ.

The refinement type constructor Π(x : int).ρ is the type of index abstrac-
tions. The refinement type constructor P ⊃ ρ is the type of guarded terms, which
intuitively are terms of type ρ that can only be accessed when the constraint set
~P entails P . In Dependent ML’s internal language, P ⊃ ρ has the introduction
form ⊃+ (v) and the elimination form ⊃− (t). Their non-algorithmic typing
rules follow:

7

ty-⊃-intro

φ; ~P , P ; Γ ⊢ v : ρ

φ; ~P ; Γ ⊢⊃+ (v) : P ⊃ ρ

ty-⊃-elim

φ; ~P ; Γ ⊢ t : P ⊃ ρ φ; ~P � P

φ; ~P ; Γ ⊢⊃− (t) : ρ

Which underlying type T does P ⊃ ρ refine? If ρ ⊏ S then P ⊃ ρ should
refine a type T such that JT K = {⊃+ (v) | v ∈ JSK}. We can call this type ∗ ⊃ S,
read stub implies S. DML never defines such a type, and in fact the type system
underlying DML’s internal language is not defined. However, such a system is
implicit both in the internal language’s term syntax and in a subtyping relation
referred to as the static subtyping relation.

Remark 3.9. Isn’t DML supposed to refine ML, which has no stub implication
types? Yes, and in fact DML defines a external language which does refine ML
if we’re willing to relax our definition of refinement. The refinement relation of
the external language leverages the intuition that in the above remark JSK and
JT K are isomorphic as sets. But we should only consider them interchangeable
if they are isomorphic with respect to our refinement system; i.e., the following
two judgments must be derivable:

φ; ~P ;x : ρ ⊢⊃+ (x) : P ⊃ ρ

and
φ; ~P ;x : P ⊃ ρ ⊢⊃− (x) : ρ

which will be the case whenever we have

φ; ~P � P

This suggests that we must modify our refinement types framework once
again. Now a refinement ρ will be interpreted as a pair (A,B) where:

1. ∃S.JSK ∼= A

2. B ⊆ A

A refinement judgment for our external language then takes the form

φ; ~P ⊢ ρ ⊏ S

and means that under sorting context φ and constraint set ~P , ρ identifies a
subset of some set that is isomorphic to S with respect to our refinement type
system. The inference rules for this relation would include the following:

R-Imp

φ; ~P ⊢ ρ ⊏ S φ; ~P � P

φ; ~P ⊢ P ⊃ ρ ⊏ S

Xi defines a dynamic subtyping over this refinement relation. It is not sound to
use values of two isomorphic sets interchangeably; ⊃ +(v) can’t be used where v

8

is expected. For this reason the dynamic subtyping relation produces “instruc-
tions”, in the form of an evaluation context E, for mapping terms of refinement
type P ⊃ ρ into terms of refinement type ρ. Its subtyping judgments there-
fore take the form φ; ~P ⊢ E : ρ <:S π. It contains a rule (dy-sub-Π-l) which
subsumes the functionality of the following simplified rule:

φ; ~P ⊢ E : ρ <:S π φ; ~P � P

φ; ~P ⊢⊃− (E) : P ⊃ ρ <:S π

4 Liquid Haskell

Vazou et al. Refinement types for Haskell. ACM SIGPLAN Notices. Vol. 49.

No. 9. ACM, 2014.

Remark 4.1. Liquid types refers to a method for inferring refinement types.
It involves a constraint solving algorithm that is tangential to the topic of this
lecture. Instead, I will examine how the work of Jhala and his students fits into
the refinement types framework.

Remark 4.2. Instead of expressing constraints in an index language, liquid type
systems use the term language itself. Here is an example of a base refinement
in Liquid Haskell:

{v : Int | v > 0}

Here the constraint v > 0 is a program term rather than an index term. We
can interpret this type as the set of integers n such that [n/v](v > 0) ⇓ true.
A subtyping judgment between base refinements then requires the supertype’s
constraint to normalize to true whenever the subtype’s constraint does.

∀γ ∈ JΓK.γe1 ⇓ true =⇒ γe2 ⇓ true

Γ ⊢ {v : B | e1} <: {v : B | e2}

The idea of refining types with arbitrary program terms originated in Cor-
mac Flanagan’s Hybrid Typechecking, which dealt with the undecidability of
the above subtyping rule’s premise by falling back on contract enforcement
techniques. Liquid Haskell conservatively approximates such implication checks
with a logic of equality, uninterpred functions, and linear integer arithmetic.

Remark 4.3. An uninterpreted function is a multi-argument function which
allows a single law, called congruence, for reasoning about its applications. If F
is an uninterpreted function, then congruence tells us:

∀t1, . . . , tn, t
′
1, . . . , t

′
n.
∧

i

(ti = t′i) =⇒ F (t1, . . . , tn) = F (t′1, . . . , t
′
n)

9

In a pure language like Haskell, we can encode function applications as ap-
plications of uninterpreted functions. In ML this technique is not applicable
because any function may produce side effects.

Example 4.4. Reworking our running example into the style of liquid types
gives:

--[[(comment annotation)

@measure

len : List -> Int

len nil = 0

len cons(hd, tail) = (length tail) + 1

]]

fun lastcons (l : { v : List | len(v) > 0 }) : {v : List | len(v) = 1} =

case l of

| cons(hd, nil) = l

| cons(hd, tail) = lastcons tail

Remark 4.5. We can think of len as a program function. However, adding
the @measure annotation to len provides our constraint solver access to extra
axioms when it is encoded into an uninterpreted function. These axioms are
contained in the types of the List constructors:

nil : {v : List | len(v) = 0}

cons : hd : Int -> tail : List -> {v : List | len(v) = len(tail) + 1}

Remark 4.6. Walk through the above example.

Remark 4.7. The typing context Γ contains not just variable bindings x : ρ, but
also boolean term constraints t which encode path sensitivity, i.e. information
about which branch was taken in a case expression. The subtyping judgment

l : {v : List | len(v) > 0}, (len(l) = 1) ⊢ {v : List | v = l} <: {v : List | len(v) = 1}

must hold for the first case body to type check. It is translated into the following
formula.

(len(l) > 0) ∧ (len(l) = 1)
Γ

∧ (v = l)
lhs

=⇒ (len(v) = 1)
rhs

Remark 4.8. Because Liquid Haskell has no extra type syntax structure for
managing an index language, it has a very simple refinement relation.

Γ, v : B ⊢ t : Bool⇓

Γ ⊢ {v : B | t} ⊏ B

Bool⇓ is the type of all boolean terms which normalize.

Remark 4.9. If B is a base type, B has a Γ-indexed family of refinements
preorders, 〈rB,≤B〉Γ

10

