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Abstract

On-stack replacement (OSR) is a programming language implementation technique that
allows a running program to switch to a different version of code. For example, a program could
start executing optimized code, and then transfer to and start executing unoptimized code. This
was the original use case for OSR, to facilitate debugging of optimized code.

After its original use was established, OSR shifted to a different use case: optimizing programs.
OSR allows the run-time system to detect if a program is executing an inefficient loop, recompile
and optimize the method that contains the loop, and then transfer control to the newly compiled
method. Another strategy is to optimize code based on some assumptions, then, if the assumptions
are invalidated at run-time, transfer control back to the original, unoptimized code.

In this survey paper, we study how OSR was first introduced as a means for debugging, how
it came to be used for program optimizations, its implementation as a reusable library, and other
directions of research.

1 Introduction

On-stack replacement (OSR) is a technique used in some programming language implementations,
such as Java and JavaScript, to improve program performance. In these implementations, code is
generated at run time, in a process known as just-in-time (JIT) compilation. The run-time system,
called a virtual machine (VM), executes programs, monitors program execution, and decides when
to optimize a method or roll back an optimization. Throughout this process, OSR allows the VM to
switch from one version of a method to another—while the method is still executing. For instance,
if an inefficient version of a method is executing, the VM can compile a more optimized version, and
then use OSR to switch to the new version and continue executing. In this example, OSR allows an
implementation to improve the performance of a program as it runs. As another example, the VM
could speculatively optimize a method based on some assumption, and if it observes the assumption
to be invalid, use OSR to revert to the original method version.

However, OSR is a complex mechanism, with many difficult implementation details to overcome:
the compiler must generate special metadata, the VM needs to map the local state of one method
version to another version, low-level stack manipulation and swapping must be performed, and
stack frames corresponding to inlined methods must be reconstructed. Because of these challenges,
the significant implementation and maintenance costs of OSR means few production programming
language implementations use OSR, even if the performance benefits are desirable. Nonetheless,
OSR has been developed over many years, and is vital to enable significant optimizations in the
implementations that do use it.
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In this survey paper, we examine three advances in the development of OSR: the original OSR
paper [Hölzle, Chambers, and Ungar, 1992], an early approach that uses OSR for optimizations [Fink
and Qian, 2003], and an implementation of OSR in a popular compiler framework [D’Elia and
Demetrescu, 2016]. We discuss how OSR was first introduced to facilitate debugging, how its
primary use case shifted from debugging to program optimization, its implementation and use as a
reusable library, and other directions of research.

2 Dynamic Deoptimization for Debugging

Hölzle et al. [1992] first introduced the OSR technique, under the name of dynamic deoptimization,
to provide source-level debugging in the Self language. Self programs need to be highly optimized,
otherwise they run too slowly to be practical. However, this makes debugging more difficult because
the executable code no longer corresponds to the source code: instructions may be reordered,
variables may be removed, or methods may be inlined. For example, the debugger may not be able
to single-step through the program, examine and modify variables, or display a physical stack trace.
To address these challenges, the authors developed a new strategy: when the user wants to interrupt
and debug a running program, the VM generates an unoptimized version of the currently executing
method and then switches to it.

The Self implementation demonstrated that OSR was feasible, and it pioneered many of the
OSR techniques still in use today. For instance, OSR transitions can only occur at special interrupt
points in the program—these interrupt points contain the necessary metadata for mapping optimized
program states to unoptimized program states. The metadata describe the corresponding call tree
and source position in the unoptimized program, as well as the locations and values of local variables
and subexpressions. Another technique Hölzle et al. introduced was lazy deoptimization, where
deoptimization is deferred for a method until that method’s stack frame is at the top of the stack.
This avoids the difficulty of modifying stack frames in the middle of the stack and then having to
adjust other frames.

Most of the related work at the time concerned debugging optimized code, rather than switching
between two versions of a method. The other debugging approaches often had compromises: either
debugging ability was hindered for better optimizations, or the optimized code was slowed down
by including debugging information. Only Self was able to provide full source-level debugging of
optimized programs, by using OSR to switch from optimized code to unoptimized code.

The most similar prior work was Smalltalk-80 [Deutsch and Schiffman, 1984], which introduced
an earlier version of interrupt points as well as dynamic compilation, more commonly known as JIT
compilation. The interrupt points meant that a method was compiled only at its first invocation;
furthermore, the interrupt points contained metadata to map compiled code back to source code.
Compared to Self, however, Smalltalk did not perform optimizations, so there was no need for
deoptimization.

3 On-Stack Replacement for Optimizations

Although OSR was originally developed as a means for debugging, it is now used as a tool for
program optimization. Fink and Qian [2003] generalized the term on-stack replacement to refer to
any kind of transition from one version of code to another, for example, a transition from optimized
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code to unoptimized code.1 They prototyped this kind of transition in the Jikes Research Virtual
Machine (RVM) by combining run-time profiling with deferred compilation. The RVM collects
profiling data about a program’s execution, identifies the frequently executed code branches, and
then compiles only those branches. Uncommon branches are compiled as stubs; if a stub is actually
reached during execution, it triggers re-compilation of the entire method as well as an OSR transition
to the new code. This strategy reduces both compilation time as well as the size of the generated
code. Furthermore, the RVM can choose between three levels of optimizations, based on estimating
the potential compilation costs and performance speedups. Fink and Qian evaluated their system
and observed modest, but promising results: they found an average improvement of 2.6% in the
SPECjvm98 benchmarks, with 8% being the largest improvement.

Some of the ideas in the RVM originated from the Self [Chambers and Ungar, 1991, Hölzle
and Ungar, 1994] and Java HotSpot [Paleczny, Vick, and Click, 2001] virtual machines. Chambers
and Ungar introduced deferred compilation of uncommon branches in the Self virtual machine;
however, the compilation decisions were based on static (i.e., not run-time) information. Hölzle
and Ungar extended this idea with adaptive optimization, where frequently executed methods are
optimized and recompiled; this process also requires an OSR transition to the recompiled code.
Paleczny et al. introduced an even more aggressive strategy, called speculative optimization: code is
optimized under certain assumptions, but events may invalidate those assumptions and trigger a
deoptimization. For example, many optimizations in HotSpot assume the class hierarchy does not
change; however, dynamic class loading will invalidate this assumption. In this situation, HotSpot
must regenerate the unoptimized code and continue execution there. Fink and Qian’s approach is a
form of speculative optimization, as the RVM assumes certain code branches are not taken.

The work by Fink and Qian was later extended by Soman and Krintz [2006] to unblock more
optimizations. Specifically, Soman and Krintz decoupled the OSR metadata from the program code:
instead of inserting OSR-specific instructions and metadata at every point in the program that
could initiate an OSR transition, the VM maintains the metadata separately for each method, in a
structure called a variable map. Furthermore, the variable map could be updated by the compiler,
which means it no longer restricts optimizations.

Today, many production VMs implement the optimization techniques discussed above, which
are only possible with OSR. These implementations include virtual machines for JavaScript (e.g.,
Google V8,2 Mozilla SpiderMonkey,3 Apple JavaScriptCore,4 and Microsoft ChakraCore5), the Java
HotSpot VM, and implementations on top of the GraalVM.6 All these implementations use OSR
to switch from unoptimized code to optimized code (if a method is frequently executed), or from
optimized code to unoptimized code (if optimization assumptions are invalidated). Unlike Self, none
of these implementations use OSR for debugging.

4 Reusable Implementations of On-Stack Replacement

With multiple independent implementations of OSR, one question is whether OSR could be imple-
mented in a library and reused. D’Elia and Demetrescu [2016] address this by extending the work

1Older work did not recognize deoptimization as a form of OSR.
2https://v8.dev
3https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
4https://developer.apple.com/documentation/javascriptcore
5https://github.com/microsoft/ChakraCore
6https://www.graalvm.org/

3

https://v8.dev
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.apple.com/documentation/javascriptcore
https://github.com/microsoft/ChakraCore
https://www.graalvm.org/


CS 7600 Survey Paper Ming-Ho Yee

of Lameed and Hendren [2013] to implement OSR in the LLVM compiler framework. LLVM is a
popular framework for implementing optimizers and compilers; it also provides the MCJIT library
for developing JIT compilers. However, MCJIT lacks a mechanism for performing OSR, meaning
LLVM users must develop their own OSR implementations. To remedy this situation, Lameed and
Hendren designed a reusable OSR implementation in LLVM. Later, D’Elia and Demetrescu updated
and extended that implementation: they support OSR transitions from any point in the program,
and they allow targets of OSR transitions to initiate their own OSR transitions.

Implementing OSR in the LLVM framework has two significant benefits. First, the implemen-
tation is platform-independent and reusable. Other developers can use LLVM to implement JIT
compilers without having to implement OSR on their own; they also get support for all hardware
architectures that LLVM targets. Second, since the OSR mechanism is entirely in LLVM, it can be
optimized by LLVM’s extensive optimization passes.

Two other approaches include Truffle/Graal and the Mu micro virtual machine. Truffle [Wimmer
and Würthinger, 2012, Würthinger, Wöß, Stadler, Duboscq, Simon, and Wimmer, 2012] is a
framework for implementing programming languages on the Graal VM [Würthinger, Wimmer,
Wöß, Stadler, Duboscq, Humer, Richards, Simon, and Wolczko, 2013]. The language implementer
only needs to write an interpreter for their programming language, and can take advantage of
Graal’s optimization and deoptimization mechanisms—the author does not need to be concerned
with the details of OSR. Mu [Wang, Lin, Blackburn, Norrish, and Hosking, 2015] takes a different
approach, by providing a minimal virtual machine abstraction that supports, among other features,
OSR [Wang, Blackburn, Hosking, and Norrish, 2018].

5 Other Related Work

Aside from addressing OSR in terms of debugging, optimization, and implementation, researchers
have considered other directions of study. In this section, we briefly summarize a few of those topics.

Flückiger, Scherer, Yee, Goel, Ahmed, and Vitek [2017] studied compiler correctness with
deoptimizations. Prior work had studied compiler correctness, as well as the correctness of JIT
compilation; however, no other work had considered speculative optimizations. The challenge is
that speculative optimizations are inherently unsound, as they depend on assumptions that could
be wrong—but OSR allows the program to recover when assumptions are invalid.

D’Elia and Demetrescu [2018] proposed to decouple OSR from VMs: they suggested that OSR
could be treated as a general mechanism for transferring execution between two versions of a
program, without support from a virtual machine. For instance, a program about to crash could use
OSR to switch to an unoptimized version of code, making it easier for developers to examine the
core dump. As another example, OSR could be used to obfuscate a program by randomly switching
execution between two program versions. D’Elia and Demetrescu presented a formal framework to
reason about these transformations, implemented a prototype in LLVM, and revisited debugging of
optimized code as a case study.

Essertel, Tahboub, and Rompf [2018] continued these ideas and examined how OSR could be
used in metaprogramming, i.e., programs that generate other programs or source code. Again, the
goal was to use OSR to implement speculative optimizations and deoptimizations, without needing
a VM. They demonstrated the feasibility of their approach by using OSR to optimize an SQL-to-C
query compiler.
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So far, all the discussion in this paper, and mentioned implementations, concerned method-based
JIT compilers, where the unit of compilation is an entire method. An alternate approach is a tracing
or trace-based JIT, where the unit of compilation is a sequence of instructions. As a program runs,
the VM records frequently-executed sequences of instructions—which typically correspond to hot
loops and may cross method boundaries—and generates faster, more optimized code. Subsequent
executions of the trace must execute the optimized code, otherwise the VM will deoptimize and
resume execution in the original code, using a transition similar to OSR. For a further discussion on
tracing JITs, but with minimal attention to OSR, refer to the survey by Yee [2017].

6 Conclusions

The on-stack replacement technique has evolved since it was first introduced in the implementation
of the Self programming language. Originally designed as a means for debugging optimized code,
today OSR is mainly used for program optimizations. The ability to change the version of code
that is executed grants an enormous amount of flexibility: it means a program is never forced to
commit to a single version of code. For example, a program can always transfer execution to a more
optimized version of code, or a program can be optimized under certain assumptions and roll back
the optimization if the assumptions are invalidated.

Today, OSR is used for optimizations in a number of programming language implementations,
such as Java HotSpot, Google V8, Mozilla SpiderMonkey, Apple JavaScriptCore, and Microsoft
ChakraCore. Researchers are continuing to explore reusable implementations of OSR, such as the
Truffle/Graal project, and also how OSR can be generalized as a program transformation mechanism
without relying on a virtual machine. Just as the main use case for OSR has changed since it was
first introduced, it is possible that more applications of OSR will continue to be discovered.
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Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule Them All. In Proc.
of the International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software (Onward!), 2013. doi: 10.1145/2509578.2509581. URL http://lafo.ssw.uni-linz.
ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf.

Ming-Ho Yee. Tracing JITs for Dynamic Languages, 2017. URL https://prl.ccs.neu.edu/blog/
2017/03/15/tracing-jits-for-dynamic-languages/.

7

http://static.usenix.org/event/jvm01/full_papers/paleczny/paleczny.pdf
https://www.cs.ucsb.edu/~ckrintz/papers/osr.pdf
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.321
http://dx.doi.org/10.1145/3186411.3186412
https://wks.github.io/downloads/pdf/osr-vee-2018.pdf
http://dx.doi.org/10.1145/2384716.2384723
http://dx.doi.org/10.1145/2384577.2384587
http://lafo.ssw.uni-linz.ac.at/papers/2012_DLS_SelfOptimizingASTInterpreters.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2012_DLS_SelfOptimizingASTInterpreters.pdf
http://dx.doi.org/10.1145/2509578.2509581
http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2013_Onward_OneVMToRuleThemAll.pdf
https://prl.ccs.neu.edu/blog/2017/03/15/tracing-jits-for-dynamic-languages/
https://prl.ccs.neu.edu/blog/2017/03/15/tracing-jits-for-dynamic-languages/

	Introduction
	Dynamic Deoptimization for Debugging
	On-Stack Replacement for Optimizations
	Reusable Implementations of On-Stack Replacement
	Other Related Work
	Conclusions

