
Type Assignment in Programming Languages 

Luis Manuel Martins Damas 

Doctor of Philosophy 

University of Edinburgh 

1984 



Abstract 

The purpose of this work is to present and study a family of 

polymorphic type disciplines for programming languages similar to the 

type discipline of ML, the metalanguage of the LCF system, which are 

based on the use of type inference systems to define the notion of 

well typed expressions and programs and on the use of type 

assignment algorithms to compute the type or types that can be 

inferred for those same expressions or programs. 

Previous work on the theoretical foundations of the ML type 

discipline is reexamined and completed here. It is also extended in 

two directions, namely to handle overloading of identifiers and also 

to cope with a semantics involving references to a store as first 

class objects. 

For each of the theories studied here we present proofs of the 

semantic soundness of type inference, i.e. that well typed 

expressions evaluate to objects of the correct type and that in 

particular they do not lead to run-time errors like trying to add an 

integer to a list. 

Algorithms for computing the type or types which can be 

inferred for expressions are also presented together with proofs of 

the soundness and completeness of the algorithms, i.e. that the 

algorithms compute exactly the types which can be actually inferred 

for the expressions. 
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INTRODUCTION 



Introduction 

The advantages gained by imposing some kind of type discipline 

on programs (and, particularly, on programmers...) have been 

recognized since the earliest days of programming language design. 

As a matter of fact most of the more successful programming 

languages since then have included such a discipline, e.g. Fortran, 

Algol 60, PL/I, Algol 68, SIMULA, PASCAL, C, etc. . Nevertheless the 

kind of strong typechecking which is a common feature of all those 

languages becomes sometimes too restrictive, particularly after the 

introduction of constructs which allow programmers to define new 

types to model data structures. This kind of restriction is well 

illustrated by the following example from Algol 68. Consider the two 

following Algol 68 mode (the Algol 68 equivalent to type 

[Wijngaarden et at 75]) definitions 

struct IntList = (mt hd, Ref IntList ti); 

struct RealList = (Real hd, Ref RealList ti); 

which are intended to model lists of integers and lists of reals. 

Now if, in a particular application, we need to reverse such lists, 
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we would have to define two functions, one to act on lists of 

integers and the other to act on lists of reals, even though the 

text of the definitions of those functions would differ only by the 

mode declarations for the argument and result of the function. This 

restrictions may explain, in part, why those languages had a very 

small impact on areas such as Artificial Intelligence where programs 

usually involve a relatively large number of different, but in many 

cases similar, data types which tend to change often during program 

development. 

Apart from the obvious solution of allowing programmers to 

defeat the type discipline, one way of overcoming the limitations 

exemplified above is to allow parametrization on types. This is in 

fact the approach followed in recent languages like Russel 

[Demers & Donahue 79], CLU [Liskov & Snyder 771 and Aiphard 

[Wulf et at 76] which allow types to be passed to procedures as 

arguments. However it should be pointed out that this is done at the 

cost of increasing the complexity of both the language syntax and 

semantics and, even if the semantics of such languages is now on 

solid theoretical grounds due to the works of [Reynolds 741, 

[McCracken 79] and others, the fact remains that, when compared with 

type free languages, this sometimes leads to more complicated 

programs which require an extra programming effort. This is 

particularly true when type parameters are only used to satisfy the 

typechecking constraints and do not play an active semantical role, 

in contrast with those situations where they are dynamically tested 

to achieve a type dependent semantics like in, e.g., a function 

capable of printing objects of different types. 
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A completely different aproach to the problem we have been 

discussing has been introduced with ML, the metalanguage of the LCF 

system [Gordon et at 79]. Rather than introducing types in the 

semantics, ML manages to combine the advantages of a strict type 

discipline with the conciseness of a type free language, by 

exploring the fact that the semantics of functions like the identity 

function 

Ax .x 

is independent (in a type free semantics) of the types of their 

arguments. Such objects are type polymorphic in the sense that they 

belong to or possess more than one type. The approach followed in ML 

essentially explores the fact that, since many of the primitives of 

a programming language are naturally polymorphic, then many of the 

functions one can define using those primitives will also be type 

polymorphic. In fact it is possible to derive the type(s) of a 

function from its definition. As a consequence of this ML does not 

require programmers to mention types at all although, for pragmatic 

reasons, it allows them to do so. 

To illustrate how type inference is achieved consider a simple 

declaration like 	 - 

let compose f p = Ax.f(g(x)) 

which defines function composition. It is obvious that if the 

expression 

f(g(x)) 

is to be well typed then the following assumptions about the types 

of f, g  and x 

f:a- 
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X : Y 
 

must hold for some types a, s and y,  in which case the type of the 

expression will be B. It follows then that, whatever the types a, B 

and y, are, compose has type 

We will express this by saying that we can infer the type scheme 

for compose. 

To a great extent, that is while we do not consider the 

facilities provided by ML for introducing new types and new type 

operators, ML can be seen as an untyped language in which the type 

of an object is a property which can be derived from its definition. 

As a matter of fact what the ML interpreter does is to refuse to 

evaluate programs when it is unable to derive a type for them. Thus 

types play only a passive role in the semantics of the language in 

the sense that they are used, as a filter, to restrict the set of 

acceptable programs to those for which a type can be derived. The 

main advantage gained by this filtering arises from the fact that it 

can be proved that well typed programs do not lead to error failures 

like trying to apply a non-functional value to an argument or trying 

to add an integer to a list. 

For the sake of the reader unfamiliar with ML we will present a 

few programming examples which show that polymorphism and type 

inference are not restricted to simple cases like the one above. 

First of all we note that types in ML are built from primitive types 



like bool and int, and type variables a, B •.., using type operators 

like - for functional types, + for disjoint sums(unions), x  for 

cartesian product, and other operators like postfixed list for lists. 

Using the following primitives on lists 

null Va.a list - bool 

nil : Va-c list 

hd 	: Ya.ct list - a 

ti 	: Vct.a list - a list 

cons : Va.a + a list + a list 

with the obvious meanings, we can write the following definition of 

a function for concatenating two lists 

letrec conc 1 1' = 

if null(l) then 1,' 

else cons (hd 1) (conc (tl 1) 1') 

(where letrec is used to introduce a recursive definition) from 

which the ML type assignment algorithm would infer the type scheme 

Va.a list - a list -' a list 

for conc. 

Similarly, the function map which maps a given function over a 

given list, i.e. such that 

map 	[x1 ; ... ;x] = 

can be defined in ML by 

letrec map f 1 = 

if null 1 then nil 

else cons(f(hd l))(map f (ti 1)) 

In this case the type scheme inferred for map by the ML type checker 



will be 

VczVB.((a+B) + (a list + 	list)). 

As a final example involving lists we will consider a 

polymorphic function for sorting a given list. This function will 

take as arguments a predicate p defining the order relation and a 

list 1. 

letrec sort p 1 = 

letrec insert x 1 = 

if null 1 then cons x nil 

if p (hd 1) x then cons x 1 

else cons (hd 1) (insert x (tl 7,)) 

in 

if null 1 then nil 

else insert (hd 1) (sort p (tl 1)). 

As it could be expected the type scheme inferred for sort will be 

Vci.(ct - a - bool) + a list + a list. 

Finally, to conclude this digression into the ML type 

discipline, we will show how it provides for the introduction of new 

types and type operators in terms of older ones. This declaration is 

in fact accompanied by the introduction of a set of functions which 

operate on values of the new type and is such that the 

representation of those values is only accessible to those 

functions. As an example we will consider here the definition of 

binary trees whose tips are labelled by objects of an arbitrary 

type. This can be done in ML as follows 

absrectype a bitree = a + (a bitree x a bitree) 



with Sons = outr o repbitree 

and tip = out L o repbitree 

and maketree = absbitree o mr 

and tiptree = absbitree o ml 

and nuiltree = isl o repbitree 

In the above definition o is a binary operator denoting 

function composition similar to the function compose defined above, 

outl and  outr are projections from an union type into each of the 

summand types, and ml and  mr are the associated injections. More 

importantly repbitree and  abs bitree are the functions which map a 

binary tree into its representation and vice versa and thus have 

type schemes 

rephitree: Va.a bitree -, (a + a bitree x a bitree) 

absbitree: Va.(cx + a bitree x a bitree) 	a bitree. 

Note that although in current ML implementations the maps absbitree 

and repbitree behave, from a semantical point of view, just like the 

identity function they could be used to implement a more efficient 

representation, in terms of storage required, of the data type (e.g. 

by packing and unpacking). Furthermore they are only available when 

defining the basic operations on the data type but not in the scope 

of the data type definition thus providing a way of encapsulating 

the representation chosen for the data type, hence the designation 

of abstract data type. 

Now, even the introduction of abstract data types does not 

change much the point of view mentioned above of ML being seen as an 

untyped language in which type assignment is used as a filter. This 



I 
is so because, from a semantical point of view, we can, in a 

declaration like the one above, ignore the part concerning types 

and treat the declarations of nuiltree, tip ..., as any other 

function definitions. Furthermore, even from a point of view of type 

assignment, if we ignore questions of the scope of the new type 

operator, we can handle the above declaration by assigning the types 

above to absbitree and repbitree and then assigning types to 

null-tree, tip ..., in the usual way. 

Having acquainted those readers unfamiliar with ML, with the 

main features of its type discipline we should also point out that 

ML, even if it provides assignable variables, is essentially a 

purely applicative language, and its lack of updatable structures 

like, e.g. arrays, does limit its acceptability as a general purpose 

programming language. 

The theoretical basis for the ML type discipline was introduced 

in [Milner 78] where a type asslgnnient algorithm was defined and 

type assignment was shown to be semantically sound. 

The main aim of this work is to complete Miler's work and to 

extend it in two directions. On' one hand we will present here the 

proofs of the results anounced in [Damas & Milner 82] stating the 

existence of principal type schemes and the completeness of the ML 

type assignment algorithm. On the other hand we will extend that 

theory to handle overloading of identifiers and to a semantics 

including references to an updatable store as first class objects. 

We will now present the criteria that, in our opinion, a theory 



of type assignment for a programming language should satisfy if it 

is to be of any practical use. 

First of all it is desirable from a pragmatic point of view 

that the type discipline should be stated in some simple form. In 

accordance with previous works on type assignment we will use 

inference systems to specify what expressions are well typed and 

what types can be inferred for them. For an algebraic approach to 

type assignment see [Shultis 82] 

Secondly the type system should be semantically sound in the 

sense that if a type can be inferred for an expression than the 

result of evaluating the expression should be of that type. An 

example of an application where such strict view about soundness of 

the type discipline is essential, is provided by the LCF system 

itself where one of the primitive types is type "theorem" and one 

wants to ensure that objects of that type can only be produced using 

primitive functions modelling axioms and inference rules. 

Thirdly, for any practical purpose, it is essential to have some 

form of algorithm to infer types for expressions. Moreover the type 

inferred by the algorithm should be as general as any other type 

which could be inferred for the expression because otherwise it 

could fail to come up with a type which the user was entitled to 

expect from the inference rules. This also means that the algorithm 

should only fail if no type could be inferred for the expression. 

Finally the type discipline achieved should be powerful enough 

to overcome the limitations of strict type disciplines exemplified 

at the very beginning of this introduction. 
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So far we have not made any special reference to 	the 

programming language to which apply such theories. For the sake of 

conciseness we will study, in this work, type assignment for a simple 

extension of the A-calculus obtained by the introduction of a 

declarative construct of the form 

let xe in  e' 

denoting the result of evaluating e' whith  x  denoting the value of e. 

Since the above construct is essentially equivalent (although 

not necessarily identical) to the -redex 

(Xx.e') e 

thus not playing any new semantical role, it is worthwhile to try to 

justify its inclusion. 

To that end it is convenient to mention other previous works on 

type assignment outside computer science, namely, Functionality 

Theory in Combinatory Logic [Curry&Feys 58] and in particular the 

works of [Curry 69] and [Hindley 69] on the existence of principal 

type schemes of an object of combinatory logic, and the subsequent 

extension of this result by [Yelles 79] to terms of the A-calculus. 

A common feature of all the works mentioned above is that they 

all study the set of types which can be inferred for the terms of 

some simple formal language using some system of inference rules. 

Amongst the properties of such systems one usually finds some sort 

of semantic soundness of type inference, the existence of most 

general or principal types amongst the types that can be inferred 

for a term and, in certain cases, the existence of algorithms to 

compute them. 
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However none of the works mentioned above, except for the one 

by Milner, provides a type assignment algorithm powerful enough to 

overcome the limitations imposed by strict type disciplines 

mentioned at the very beginning of this introduction. 

The reason for the success of Miler's work can be found on the 

fact that, instead of restricting himself to the ),-calculus, he 

studies type assignment for an extension of the A-calculus including 

a declarative contruct of the form described above, and to the fact 

that his type inference system is such that that construct might 

have a type even when the B-redex 

(Ax.e') e 

(which from a semantical point of view is essentially equivalent) 

has not. 

An explanation for the above asymmetry can be traced to the 

fact that, when x is used polymorphically in e', the abstraction 

Ax.e' might fail to have a type at all. 

Although one could formulate Milner's theory using only the 

A-calculus by typing B-redexes the way the let-construct is typed, 

it seems natural, when dealing with programming languages, specially 

when a non purely applicative semantics is involved, to include some 

form of declarative construct. 

In relation with the above posed problem of typing -redexes it 

is worthwhile to refer to two different approaches that were studied 

for the A-calculus. The first one consists in postulating the 

invariance of type inference under s-reduction, i.e. to say that the 

types which can be inferred for the -redex 
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(Ax.e') e 

are all those which can be inferred for 

[elx]e' 

The system thus obtained has been studied extensively in logic and 

it has been proved [Yelles 79] that no type assignment algorithm can 

be found for it as the problem of deciding whether a type can be 

inferred for a term is, for the system in question, only 

semidecidable. 

A different approach, which also achieves invariance of type 

inference under 8-reduction, was studied in [Coppo et at 80] and is 

based on extending the notion of functional type to allow A.e to be 

well typed even when x  is used polymorphically in e.  In that system, 

functional types of the form 

+ 

are introduced to model the type of a function which returns an 

object of type T when given an argument of, simultaneously, types 

1 ..., n
. However the authors of that work have also shown that 

what was said above about the undecidability of type assignmemt also 

applies to this system which detracts from its usefulness in 

practical applications on computer science. 

To conclude this discussion we note on passing that we will 

show in this work that if we define a let-reduction, analogous to 

8-reduction, for Milner's extension of the -calculus, then type 

inference is preserved by let-reduction. 

We can now outline the remainder of this work in which we 
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present three theories which meet the criteria mentioned above. 

In chapter I we study an inference system for inferring types 

for expressions. This system overcomes the limitation of at most one 

assumption for each variable of the system presented in 

[Damas & Milner 82] while preserving the existence of principal 

types and of a type assignment algorithm.'From a practical point of 

view the importance of the results of that chapter is that they 

provide a basis for handling overloading of identifiers such as 

arithmetic operators or the equality operator =. 

In chapter II we 	study 	the type 	scheme 	inference 	system of 

[Damas & Milner 82] and, 	besides presenting 	the 	proofs 	of the 

results stated in that work, 	we also 	study 	its 	relation with the 

inference system of chapter I. 

In chapter III we extend the theory of chapter II to the case 

where the language semantics is no longer purely applicative but 

includes references to a store as first class objects. We will also 

present some programming examples showing how familiar data 

structures like arrays and records with updatable fields can be 

adequately handled with this extension to the ML type discipline. 



CHAPTER I 



CHAPTER I 

A type inference system for an applicative language 

1. Introduction 

In this chapter we study a type inference system for a purely 

applicative programming language. 

The programming language in question, which is only intended to 

illustrate the main features of type inference, is the A-calculus to 

which a simple declarative construct is added. 

The type inference system is essentially that of basic 

functionality theory in combinatory logic and A-calculus 

[Curry & Feys 58]. However, apart from the extension neccessary to 

handle the extra declarative construct, we place an emphasis on the 

use of multiple assumptions •about the type(s) of a free variable 

which is not present in basic functionality theory. The reason for 

this emphasis is twofold. First, it enables declarations to be type 

irI 
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polymorphic. Secondly, it provides a basis for handling overloading 

of identifiers in programming languages. 

Besides proving the soundness of type inference, i.e., that if 

a type can be derived for an expression the result of evaluating the 

expression is of the correct type, we also give an algorithm for 

deciding, when given an expression, if there is any type at all 

which can be inferred for the expression, and in the affirmative 

case computing a most general or principal type among those that can 

be derived for the expression. The existence of such an algorithm is 

in fact the main advantage, from a computer science point of view, 

of our system over the more permissive system of Coppo et at 

[Coppo et at 80] which has already been described in the 

introduction to this work. 

The existence of a principal type for expressions for which 

some type can be derived, is, perhaps, the most interesting result 

of the chapter. This is more so because, by allowing multiple 

assumptions about the same variable, we are ensuring, in general, 

the non-existence of a principal or most general type (the precise 

meaning will be given later) amongst those types which can be 

derived for an expression from a particular set of assumptions. In 

this sense, when restricted to A-terms, our existence theorem 

generalizes the one of Curry and of Hindley [Hindley 69] in 

combinatory logic and similar results for the A-calculus 

[Yelles 79], by removing the restriction of only one assumption 

about each free variable. 

In order to be able to give a computable characterization of 
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the set of all the types which can be inferred for an expression 

from a particular set of assumptions we introduce type schemes. Type 

schemes are terms of the form Va1 .. .at where t is a type and the a. 

are type variables, which are used to represent all the types which 

can be obtained by substituting any other types for the a. in T. It 

is then shown that, for any set of assumptions described by a finite 

number of type schemes, the set of types which can be derived for an 

expression from those assumptions can also be described by a finite 

set of type schemes. 

Finally we discuss briefly how the type system can be used to 

handle overloading of identifiers in programming languages. 

2. Expressions 

The syntax of expressions is described by the following 

ambiguous BNF grammar 

e : 	S I eel I Ax-e I let x=e in e' 

where x ranges over a given set of identifiers Ide. We will use 

parentheses where necessary to avoid ambiguity. 

Note that eel denotes function application and Ax-e functional 

abstraction. 

Many 	concepts of the A-calculus, e.g., free variable, 

substitution of an expression for a variable, etc., can be extended 
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to expressions by treating an expression of the form 

let x=e in e' 

as if it was the 8-redex 

(Ax.e' )e. 

We also introduce a reduction rule red 
let 

 which acts on 

let-subexpressioris as B-reduction does, i.e., 

let x=e in e' red 
let {e/x}e' 

where {e/x} denotes substitution of e for x. 

Given an expression e if we successively let-reduce one of the 

inner let-subexpressions, we obtain, in as many steps as the number 

of subexpressions of the let-form in e, an expression without any 

subexpressions of that form in it, i.e., a A-term (one could prove 

that any sequence of let-reductions terminates in a finite number of 

steps with that A-term). We will refer to the A-term as the let-free 

form of e. 

Finally we note that many usual constructs such as constants, 

conditionals, recursion, etc., which are not present in our simple 

language, can be replaced, at least as far as type inference is 

concerned, by identifiers ch are assumed to have appropriate 

values bounded to them, e.g., 

if e 2 e 2e 3  

instead of 

if e 1  then e2  else e 3 . 

Similarly one could use an identifier fix bounded to the fixed point 

operator to allow the definition of recursive functions. 
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3. Types 

Assuming we are given a set Tv of type variables a and a set Pt 

of primitive types i, the syntax of types is given by 

a- I 	i 	I 

Again we will use parentheses, where necessary, to avoid ambiguity. 

We will denote the set of all the types by Ty. 

As with expressions, we kept types to an essential minimum. 

However we could introduce other type constructors like sums, 

products, lists, etc., without affecting the proof of all the 

results in this chapter. 

A substitution of types for type variables S is a map from type 

variables to types. 

For given type variables a r ,... ,a and types 

[r 11a 1 ,.. . 

denotes the substitution which maps each of the a. to the 

corresponding t. and which maps any other type variable into itself. 

We will often shorten the above notation to 

[T 1 /a 1 ]. 

A substitution S extends naturally to a map from types to types 

by replacing (simultaneously) each occurrence of a variable a in a 

type with Scz(the same can be done when instead of types we have any 

larger syntactic class involving types). The composition of two 

substitutions R and S is defined by 

(SR)a = S(Ra) 



It is easily realized that the composition of substitutions is 

associative. 

We will say that a substitution S  is  idempotent 1ff SS = S. 

For any substitution S we define 

dom S = def a I sa a I 

ran S = 
def { a 
	c dom S s. t. a occurs in 58 1 

mv S = def dom S U ran S. 

Although somewhat inappropriately, we will refer to the above sets 

as the domain, range and the set of variables involved in S. 

If S is a substitution and A is a set of type variables StA 

will denote the restriction of S to A defined by 

fscz if a c A 

SJAa -deft a otherwise. 

If R and S are substitutions such that for any 

a e dom R (1 dom S, Ra=sa, we define the simultaneous composition of 

R and S, Ri-S by 

(Ra ifaCdomR 
(R-1-5)a =def 

'- Sa otherwise. 

Given a type ' if S and R are substitutions such that 

ST =R' 

then S and R must act on the type variables occurring in I in the 

same way, i.e., if A is the set of type variables occurring in i 

then SIA and  RIA must be the same. Now assume we are given types I 

and T' Then if there is any substitution S such that s'r = I' then 
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there is also one with minimal domain among those which satisfy that 

equality. We will call that substitution the minimal substitution 

such that St = 

The above discussion about minimal substitutions still applies 

when instead of just one equation we have any finite number of 

equations where a substitution S occurs applied to types or other 

larger syntactic structures involving types 

Finally a type r' is said to be an instance of a type r iff 

there is a substitution S such that 1= S. If T and t '  are instances 

of each other then we will say that T ' is a trivial Variant of r 

Note that T  is a trivial variant of t iff there are distinct type 

variables al. • n such that 

= [8 1 1a1 } t 

where the a. are all the type variables which occur in T. 

4 Semantics 

Since our semantic domains will be complete partial orders we 

will recall briefly the definitions of complete partial order and of 

other related notions. 

A complete partial order(cpo) D is a partial order with a least 

or bottom element iD and  such that every ascending w-chain in D has 

a least upper bound(lub). 

A map between cpos is continuous iff it is monotonic and also 
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preserves lubs of w-chains. 

For any set S and cpo D the set SD of all maps from S to D 

endowed with the extension order 

f_g 	def YstS fscgs 

is itself a cpo. In the case where S is a cpo D' we will use D'D to 

denote the cpo of all continuous maps from D' to D. 

If S is a set then S denotes the cpo obtained by taking the 

discrete order in S and adding a bottom element J. An example is the 

cpo of truth values T defined as {true,false}1 . 

If D1 , ..., D are cpos then the coalesced sum D1+...+D is 

defined by taking the disjoint union of D1 , ••• P with the induced 

order and then identifying the bottom elements of D1 , ..., D. If a 

cpo D is a summand of another cpo V then 

if dcD then "d in V" denotes the image of d by the natural 

injection of D into V. 

isD:V-T is defined by 

(true if v = d in V for some dcD 

isD(v) = 	if 
v = 

false otherhise 

if vcV then v 	 is defined by
ID 

( 
difv=dinV for some dcD 

VID 	I 
otherwhise 
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Given tT and v,v'V we will use 

t + v, V 1  

to denote the value defined by 

1IV ift=J•• 

t+v,v' = V 	if t = true 

if t =false 

Starting with a given domain B of basic values we define the 

domains of values V, of functions F and of the error value W, by the 

following domain equations 

V = B +F+ W 

F=V+V 

W = 

where {.} is a set with only one element. 

Note that the existence of a solution to the above equations 

follows from well known results (see, e.g., [Plotkin 76]). 

We also define the domain of environments Env by 

Env = Ide - V 

and we will use p to range over Env. Given an environment p, a value 

V and an identifier x we define the environment p[V/X] by 

(p[V/x])[y 	y=x ~ V, pfy] 

where, as it is usual in denotational semantics, we use the 

decorated brackets If 11 to indicate syntactic arguments of a map. 

Let Exp denote the set of all expressions, then we define a 
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semantic function 

E:Exp + Env • V 

by the following equations where wrong denotes ".. in V" 

Exilp = pOIx]) 

Eli e1e2b = isF(v1) + (v 11F 
 )v  2P 

 wrong 

where V. is Eflje.Jlp ( i1,2) 

Elf Ax.e]p = (Av.E[[eJ]p[v/x]) in If 

EEL let x=e 1  in e2])p = E[e2 ]) p[Ef[e1 ]]p/x] 

The semantics above is an extension of the formal semantics of 

the A-calculus defined in [Stoy 771. Since one obviously has 

Eli. let x=e 1  in e2 JJp = ELI (Ax.e2 )e 1 ]p 

it follows that the results of [Stoy 77] stating that the value 

denoted by a A-term is not altered by any of the conversion rules, 

still holds for expressions and for let-conversion. 

Comparing our semantics with the one defined by [Milner 78] for 

a similar language we see that the latter is more strict in its 

treatment of non-termination and of error values and more near 

actual implementations of applicative languages. We will refer to it 

as the strict semantics for expressions and we -define it by 

replacing two of the equations defining E with 

Elie 1e2 ]p = isF(v 1 ) 

v2=wrong wrong, (vlpF)v2 

wrong 

where v i = El{e]1P (i=1,2) 
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Elet x=e1  in e 
21 

let V1  = EL[e1lJp in 

isW(v 1 ) 	V1. EE[e2JJp[v1/x] 

We now turn to the definition of a semantic for types and start 

by recalling the notion of ideal of a cpo. 

A non-empty subset I of a cpo V is an ideal iff 

I is downwards closed, i.e., if vI and V'CV then V' is also 

in I. 

I is closed under lubs of w-chains, i.e., the lub of any 

w-chain in I is also in I. 

Ideals of the domain of values proved very satisfactory as 

models for types [Shamir & Wadge 77]. 

Let V be the set of all ideals of V which do not contain wrong. 

Clearly every intersection of ideals in V is also in V and in 

fact V becomes a complete lattice when ordered by 

def P is a subset of I. 

For any I and I' in V the set 

1+1' = de f 
{ vV J isF(v) and Vv'j (vlF)VI 	Ij 

is also in V. 

A valuation of type variables is a map ip which assigns an 

element of 'V to each type variable. 

Let Tval be the domain of valuations, i.e, 
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Tval=Tv+V 

and assume we are given a map 

E:Pt + V 

which gives a meaning to each primitive type. We then define a 

semantic function for types 

T: Ty TvaL 	V 

by 

TE i JP = EE{ iJj 

TIIcIJ 	= 

TI[t+t'Th= (Tfft)+(TE[r' JP) . 

Using T we can define, for each valuation 	, a relation 

between a value v and a type t, by 

v: ,t 	def VcTE[-r IH) 

Given a set A of assumptions of the form x: -E where x is an 

identifier and T is a type, we can extend the above relation to a 

relation between environments and sets of assumptions by 

p:A 	
def 	c A p[x]j:T. 

Finally we can give a semantic 'meaning to assertions of the 

form Ae:T, stating that if the assumptions A about the environment 

hold then e yields a value of type i, by 

Al=e:T=df  VoaL VpcEflV p : 
4)  A 
	E[eJJp 	T. 

A similar relation Ae:T can be defined by using the strict 

semantics for expressions. 

An alternative way 	of defining 	the semantic 	relation =, 

avoiding valuations, can be 	found in 	[Milner 78] and in 
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[Damas & Milner 82] where a semantics is defined for monotypes(i.e, 

types without type variables in it) only. Then, using that 

semantics, Ake:-[  is defined, as above, for monotypes. Finally = is  

extended to the general case by requiring that it holds for each 

monotyped instance A'I=e:t' of Ake: -r. However the approach followed 

here, using valuations of type variables, is more general since it 

can be easily extended to cope with other type constructs like 

recursively defined types. 

5. Type inference 

Assuming A is a set of assumptions as in the previous section 

we say that we can infer the type i for e from A, and write A}- e:t, 

iff this can be derived from the following inference rules where 

denotes the result of excluding from A any assumptions about X: 

TAUT: 	A 	 (x:T in A) 

COMB: 
A 	e:T'.-t-, A J-. e':T' 

A 	ee':T 

AIJ Ix: T'} I- e:T 
ABS: 

A 

LET: 
	A 	e:T 1 , ..., A - e:1, Au{x:11 ,...,x: 1 } 	 e':T 

A 	(let x=e in e'):T 

The following example of a derivation is organised as a tree, 
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in which each node follows from those immediately above it by an 

inference rule. 

I ABS 

I 	x:c 

I ABS 

i: (x-a)-(a-ct) I- i: (r+a)+(c+a) 

i:ci-'-a i- j:a+cz 

COMB 

i:(a+c&)(c-a), j:aa - jj:aci 

LET 

I- (let i=Ax.x in jj):ct-s-cx 

So far we have not imposed any constraint on the integer n in 

the inference rule LET. In fact we will allow n to be any 

non-negative integer. However if we require n to be non-zero we 

obtain a stronger inference relation which we will denote by 

This stronger relation has an advantage from a pragmatic point of 

view since it forces every subexpression of a well-typed program to 

be well-typed, i.e., to be such that we may infer a type for it. Note 

that this is not the case for the weaker relation I- since if we 

consider an expression of the form 

let x=e in e' 

such that x does not occur free in e', then to derive a type for the 

whole expression it is not necessary to derive a type for e. 

Furthermore one requires this stricter relation if one wants type 

inference to be sound for those semantics such as the strict 

semantics for expressions we have defined in the previous section, 
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which evaluate e even when x  does not occur free in e'• In other 

words, the stricter type inference relation is semantically sound 

for the strict semantics of expressions, or more precisely the 

following theorem also holds when we substitute for - and J=s  for 

Theorem 1 (Semantic soundness of type inference). For any expression 

e type T and assumptions A if 

A I- 
holds then 

A 1= 

also holds. 

proof: we will use induction on the structure of the derivation tree 

of AI-eT. 

basis: if the derivation consists of just one step then it must be 

an instance of rule TAUT. Thus e is a variable x  and x: -r c A. Then, 

for any valuation and environment p such that pxFT and 

the conclusion follows since EE{xP=PI1xI. 

induction step: we now assume that the derivation consists of more 

than one step and that the result holds for the subderivations or 

antecedents of the last step. We have three possible cases 

accordingly to the rule of inference used in the last step of the 

derivation. 

case COMB: here one has e:e 1e 2  for some expressions e 1  and  e 2  and 

the antecedents are AI-e l T''T and AF-e2:T' for some type 'r'. Now, by 

the induction hypothesis, both AIe1T''t and Akre 2 T' hold. So, for 
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any valuation i and ervironment p such that p:A, one has, letting 

V 
i  =

Eff ejP for i=1,2, v 1 :-r'--E and V 2 :t'. But then isF(v1 )=true and 

thus, by the definitions of E and of T, Effele2]JP=(vljF)v2 is in 

Tif T]J4) as we wanted. 

case ABS: eEAX.e' and TEuu' for some x, e' 	u  and j '  and the 

antecedent 	is AU{x:u}I-e':u'. To prove that EE{Ax.e']p  is in 

Tj u-u'jo for any valuation 	and environment p such that p:A, it is 

enough to prove that E11e' jJp[v/x] is in T u' JJ for any v in T uJl4J. 

Now, by the induction hypothesis AU{x:u}I=e':u', and since one 

obviously has p[v/x]:AU{x:u} the conclusion follows. 

case 	LET: 	e=-let x-e 1  in e2 	and 	the 	antecedents 	are 

14U{x:1 1 ,. ..,x:T }I-e 2 :t and Ake 1:Tip ..., Al-e 1 :r. We will treat the 

case where n is zero separately from the case where it is non-zero 

because in doing so it becomes clear why it is necessary to take the 

restriction to achieve semantic soundness for the strict 

semantics for expressions. So let us assume that n is zero and let 

be any valuation and p be any environment such that p:A. Then, 

since it is enough to notice 

p[ EE[e1 p/x]:4 holds. Notice that it is at this point that the 

proof would break if we were considering the strict semantics 

because then we would have to show that E[e1 ]pwronp and we would 

be unable to do it since we would not have any antecedent about the 

type of e 1 . Notice also that it is because this case does not arise 

when we consider instead of - that the theorem still holds when we 

replace - and 1= with 
S 
 and =S . Assuming now that n is non-zero we 

have by the induction hypothesis, for any valuation and any 

environment p such that p:A, and letting v 1=Ee1 p, v1:, 
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and thus p[v 1/x]:AU{x:i 1 ,... ,x:i} would also hold from 

which the result follows by applying the induction hypothesis to 

AU{x:t 1  ,..,x:r Note also that, and this is only relevant for 

the strict semantics, then v 1 4,rong since 

The following proposition collects together properties of type 

inference which are immediate consequences of its definition. 

Proposition 1. If A 	e:T holds then 

If A' contains A as a subset then A 	e: -r also holds; 

If A' is the result of excluding from A assumptions about 

variables which do not occur free in e then A' I- e:T holds; 

If e' is obtained from e by renaming some of the variables 

bounded in e, then A I- e'T holds. 

proof: suitable derivations are easly constructed in each of the 

clauses by modifying the original derivation. fl 

The fact that derivations are preserved under substitution of 

types for type variables is expressed by 

Proposition 2. 	If 	A I- e:T then 	for 	any 	substitution S, 

SA I- e:ST also holds. 

proof: We will use induction on the derivation tree of A I- e: -i. 

basis: There is only the case where the derivation consists of a 

simple application of rule TAUT, i.e, e is a variable x and x:'r is 
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in A; but then x:Sr is also in SA and so SA - x:ST can be infered by 

the TAUT rule. 

induction step: we have three dif'ferents cases to consider 

accordingly to the inference rule used in the last step of the 

derivation. 

case COMB: Then e is of the form e 1 e 2 , and there are derivations of 

A I- e 1 :T'-T and 	of 	A - e2 :t', 	but then, by the induction 

hypothesis, SA 	e 1 :ST'-ST and SA - e2 :Si' hold, and so we can 

infer SA 	e:ST. 

case ABS: e is of the form Xx.e', t is of the form 	and there 

is a derivation of AU Ix: T} 	e':t 1  but then, again by induction, 

there is a derivation of SA x 
	1 
U{x:ST'} I- e':Si 1 

 and so we can infer 

SA I- Xx.e 1 :S(tt 1 ) as we wanted. 

case LET: e is of the form let x=e in e2  and there are types TV  

., 	T 
fl 	 i 

such that A - e :r i 
	x 
. and A U Ix: T

1 
 , . . . ,x:r n I I- e 2 

:r hold. 

But then, by induction, SA 	e 1 :Si. holds for each i and so does 

SAU{x:St 1 , . .. ,x:ST} I- e2 :ST and we can infer 

SA 	(let x=e 1  in e2 ):ST. 

Note that the two previous propositions (and their proofs) also 

hold for I-. 

The following result expresses the fact that an expression of 

the form let x = e in e' has a type 1ff its reduced form has the 

same type. 



32 

Proposition 3. For any set of assumptions A , type t and expression e 

A 	(let x=e in e'):T 

holds iff 

A I- {e/x}e':T 

holds. 

proof: We can assume, if necessary by renaming them, that all 

variables bounded in e and e' and x are distinct. from each other and 

from variables occurring in A. This supposition simplifies the proof 

because, in any of the deductions involved in it, the use of rules 

ABS and LET does not lead to the exclusion of any assumption and so, 

at any node of the derivation tree, the set of assumptions will 

contain A. 

): 	if AU{x:t 1 , ... ,x:t} 	e':T and for each i there is a 

derivation of A e:r. 1 
 we construct a derivation of 

A I- {e/xle':T by replacing each TAUT step involving x:i. in the 

derivation of A U{x:T 1 , ... , x:T} - e':T with the derivation for 

A I- e:T. 1  . 

=): for each occurrence of x in e' there is, in the derivation of 

A I- {e/x}e':t, a subderivation of A. I- e:r.. But then, by 

Proposition 1 and by our initial remarks, there is also a derivation 

of A I- e:1 1  for each of the n distinct occurrences, and so it is 

possible to construct a derivation of A U{x:i 1 , . . . , x:T} j- e' :i and 

then, using LET, of A (let x=e in e'):t. U 

	

If, in the previous proposition, we consider 	instead of - 

L1 
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then only the 	part holds. However, if x  occurs free in e and 

AI - { e/x}e' then there must be at least one subderivation A'-e:i' 

and so the other half also holds in this case. Note also that this 

argument holds only for P. 

To show that type inference is preserved by let-reduction we 

need the concept of context. 

Definition. Contexts c[ ] are described by 

C[ I 	::= 	[ ] 	I 	e c[ I I 	c[ I e I 	Ax.C[ 

let xe in  C[ I I let  xC[ ] in e 

where e is an expression. 

That is, a context is essentially an expression with one of its 

subexpressions replaced by one hole [ ]. 

If e is an expression and c[ ] a context then C[e] is the 

result of replacing the hole in c[ ] with e. Note that this 

operation is different from that of substitution because no renaming 

of bounded variables is allowed. 

Proposition 4. Let c[ j be a context, e be an expression and assume 

that for some A and T there is a derivation of 

A I- C[e]:T. 

and that A I- e:Ti (i=l,...,n), are the steps in that derivation 

pertaining to the distinguished occurrence of e (there can be more 

than one if the hole is in a subexpression e" occurring in the 

context let x=e" •..). 
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Let e' be another expression such that there is a derivation of 

A! 	e':1. for each i=l,...,n. Then 

A 	C[e']: 

also holds. 

proof: We obtain a derivation of A - C[e']:T by replacing in the 

derivation of A - C[e]:T each of the subderivations 4! - e:1. with 

a derivation of A! j- e':T.. U 

	

1 	 1 

From the two last propositions we can infer the invariance of 

type inference with respect to let-conversion. 

Proposition 5. Let e be an expression and e' be obtained from e by 

let-conversion. Then 

A - e:T iff A j- e':t. 

A similar result holds for 	if we assume that every 

let-reduced subexpression 

let x-e in e' 

is such that x occurs free in e'. 

The above result shows that the type discipline imposed by type 

inference overcomes the limitation of monotyped programming 

languages where, for example, we can not have a single declared 

function for reversing lists of integers and lists of reals but 

instead we have to declare two functions which differ only by the 

types declared for their arguments. 
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6 A type assignment algorithm 

An algorithm for, given an expression e, deciding if there is 

any type which can be inferred for the expression, is introduced in 

this section. 

Although the concluding results of the previous section show 

that we could concentrate on -terms(at least as far as - is 

concerned) by applying let-reduction to expressions until a let-free 

expression is obtained, there are many advantages, when it comes to 

practical applications, in typing expressions directly. One such 

advantage, exploited in the ML system [Gordon et at, 79], is that it 

is then possible to type declarations more or less independently of 

the expressions in which they are used. As a matter of fact this can 

also be taken as a good argument to include declarative constructs 

in any language used to model type checking in programming languages. 

To define our algorithm we need the unification algorithm of 

Robinson [Robinson, 651. 

Proposition 6. (Robinson) There is an algorithm U that, when given 

two types T  and T',  either fails, or succeeds with a substitution U 

which unifies T and T',  i.e., such that Ui = U,'. 

Further 

U fails, iff there is no such unifying substitution; 

If S  unifies , and ,' then there is another substitution R 

such that S = R U; 

u is idempotent and involves only variables occurring in T or 

in 	'. 
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We will say that a type i is a common instance of T and of 

iff there is a substitution S such that ST 1=ST 2=T. It follows 

immediately from the properties of the unification algorithm that if 

two types have a common instance than they also have an highest 

common instance (h.c.i), i.e., a common instance of which any other 

common instance is an instance. 

The unification algorithm and the concept of common instance 

are easily extended to more than two types and to tuples of types. 

The type assignment algorithm to be introduced below requires 

the ability to generate new type variables. The somehow vague term 

"new type variable" could be made more precise by passing to the 

algorithm, as an extra argument, a sequence of type variables from 

which to pick new ones. However, all that is really needed is that 

we may assume, when combining the results of distinct invocations of 

the algorithm, that the set of new type variables created by each of 

the invocations, is disjoint from the set of new type variables 

created by the others; we have therefore chosen to keep the extra 

argument implicit rather then burdening the exposition and 

definitions with inessential detail. 

We will also use the term "new trivial variant" of a syntactic 

construct involving type variables to denote the result of renaming 

each of the type variables occurring in it with a new type variable. 

We are now able to give a recursive definition of the type 

assignment algorithm T which takes as argument an expression and 

returns, when it succeeds, a type and a set of assumptions. 
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Definition. T(e)=(A,T), where 

If e is x then A={x:B} and t=8 where B is a new type variable. 

If e is (e 1e2 ), let (A.,t.)=T(e.) for i=1,2 and 

U=U(i1 ,t 2 B) where B is new 

then il=U(A 1  U A) and T=UB. 

If e is Xx.e' let (A',T')=T(e'), then: 

- if there are no assumptions about x in A' then 

A=A' and t=B-r' where B is new. 

- if there is exactly one assumption x:u in A' about x then 

A=A' 	and 1=UT'. 
S 

- if x:o1 , ..., x:u are the assumptions in A' about x 

let U=U(u1 , ... ,u) 

then A=U A' 	and t=U(u1  ~ T'). 5  

If e is let x=e1  in e2  

let (A2 ,t 2 )=T(e2 ) then: 

- if there are no assumptions in A2  about x 

then A=A2  and 1T2 . 

- if x:u11  ..., x:u are the assumptions about x in A2  

let (A1 ,t 1 )=T(e1 ) and 

11 	nfl 
be new trivial variants of (A1 , -r 1 ) 

and 

then A = U (A2  U A U ... u A) 

and T = Ut. 

remark: T fails 1ff one of the invocations of U fails. 



38 

The following example, where we sketch an application of T to 

an expression by specifying the arguments and results of T and U, 

ilustrates the main features of the type assignment algorithm, 

- T(let irrAx,fx in  

- T(ii): 

T(i)=({i:82 
 I ' s  2 ) 

U(819 8283[8-s8/8] 

T(ii)=r({i:62, i:8_
~.8 I

' s ) 

- T(Ax,fx): 

- T(fx): 

T(f)=( 1f:6 4 I's 4 

T(X)=( {x: 85I's 5 

U(84 , 88)48 ~8/8] 

T(fX)rr( { f: 8+8 , X:8 5 },8 6 ) 

T(Ax.f x)=( {f: 8 5 8 6 } , 8 5 6 6 ) 

U(<82,82+83>,<688+8>)[8.8/8 	87 88/ 8 , 83/8]8 9  

T(let i=Ax.fx in ii )zr( {f: 8 7+8 8 ,f:(8 ~ 8)-+8 I ' s ) 

A comparison of our algorithm with the Curry-Hindley one for 

the A_calculus[yelles 791 reveals that, as far as A_terms are 

concerned, the second returns a single assumption for each free 

variable in the term while ours returns a different assumption for 

each occurrence of a free variable in the term. It is also not 

difficult to realise that, for an expression, T returns an 
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assumption for each occurrence of a free variable in the let-free 

form of the expression. 

We will now prove that T satisfies one of our initial claims, 

more precisely 

Proposition 7 (Soundness of T). If T(e) succeeds with (A, T) then 

there is a derivation of 

A 	e: -E. 

proof: by structural induction on e: 

basis: e is some variable x and so A={x:B}, T=B, for some type 

variable B,  and there is a derivation consisting of just a TAUT 

step. 

induction step: there are three cases to consider: 

case e=e1e2 : since both T(e1 ) and T(e2 ) succeed we know, by the 

induction hypothesis, that if (A.,.)=T(e.) for i=1,2, there are 

derivations of 

A. 
1 	

e. : 	 for i=1,2. 
1 1 

Also, since T(e) succeeds, U(r 1 ,T 2.s-8), for some type variable B, 

succeeds with a substitution U and A = U (A 1  U A) and T=UB. Now, 

since, for i=1,2, UA. is a subset of A, we know, by (i) prop.1 and 

prop.2, that there are derivations of 

A I- 

and of 

A 	e2 :Ut 2  

and we can then apply rule COMB to obtain the desired derivation. 

case: e=Ax.e': T(e) succeeds with some pair (A' ,T') and, as in the 
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definition of T, we have three subcases: 

If there are no assumptions in A' about x then A=A' and 

for some type variable S. Now by induction there is a derivation of 

A I- el :-r' and then, since there is no assumption about x in A, we can 

infer that there is also a derivation of A U {X:8} .- e:1' and then 

finally use rule ABS to obtain the desired derivation. 

If there is exactly one assumption x:u about S in A' then 

A'--A U {X:u} and T=UT '  and, since there is a derivation of 

A 	e':T', we can immediately apply rule ABS to get a derivation Of 

A 

there are two or more assumptions X:u1 , ..., X:u about S in 

A', U(u1 ,...,u) succeeds with a substitution U and A=UA' and 

1=U ( 1-'-'). Now, by prop.2 and the induction hypothesis, there is a 

derivation of UA' - e':U' and then, since 

rzUA' u IX: Uu , ... ,x:Uu } 5 	 1 	n 

=A U {x:Uu1 } 

we can infer A 	x.e 1 :U(u14.r 1 ) by applying rule ABS. 

case e = let x=e 1  in e 2 : T(e 2 ) succeeds with (A2 ,T2 ) and, by the 

induction hypothesis, there is a derivation of A2  e 2 :t2 . Then 

either 

there are no assumptions about x in A2  and then A=A2r-_A2, 1=12 

and it follows immediately from rule LET with n=O that 

A 	(let x=e 1  in e2 ):t 

holds. 

x:u1 , ..., x:u are all the assumptions about x in A 2 , T(e1) 
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succeeds with (441,11) and letting (A 1  191 
1  
1 ), ..., (A n1 ,1

fl  
1 ) be new 

trivial variants of (A 1 ,1 1 ) then 

succeeds with U and 

A = U (A 2  u A u ... u A) 

and I = UT2 . 

Now, by the induction hypothesis, (i) prop. 1 and prop. 2, there are 

derivations of 

A 	e 1 :UT 

for i=1,...,n, and since 

U A 2 = UA 2  U IX: Uu 1 ,...,x:Uu} 

= UA2  U {x:Ut 11 ,...,x:U1} 

there is also a derivation of 

A U {x:Ut 1' ,...,x:Ut} 

and the conclusion follows again from rule LET.E1 

Finally we note that it is possible to change T to suit 

instead of I-. In fact all we need to change is clause (iv) of the 

definition of T to 

(iv) If e is let x=e1  in e2  

let (A.,T.)=T(e.) for 1=1,2, then: 

- if there are no assumptions in A 2  about .x 

then A=A 1uA 2  and 

- if X:u12  ..., x:u are the assumptions about x in 

let 	 new trivial variants of (441,11) 

arid 
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then A =U (A2  UAU ... UA) 

and t=Ut 2 . 

It is then easy to see that proposition 7 holds for this new 

algorithm when we replace 	with F!. 

7, Principal types and completeness of T. 

This section is concerned with proving that the type assignment 

algorithm succeeds, when applied to an expression, if any type at 

all can be derived for the expression. We will also show that T 

computes a most general type, in a sense to be made precise below, 

amongst those that can be derived for the expression. 

Definition. A type i is a principal, type of an expression e iff 

there is a set of assumptions A such that 

A I- 

For any derivation B F- e: T '  there is a subset B' of B such that 

B' I- e: -r' is an instance of A I- e:T. 

One of the interests of principal types is that they give a 

simple characterization of all the other types that can be derived 

for the expression, and, in particular, that when known, they 

provide a mean of deciding whether or not a particular type can also 



43 

be inferred for the expression. As we shall see latter, if an 

expression has a type at all then it has a principal type. It is 

interesting to notice that if we had concentrated on those types 

which can be derived for the expression from a particular set of 

assumptions, then this property would no longer hold. More precisely 

Definition. A type i is a principal type of e under A iff 

A 

If A' - e:-r' holds for some instance A' of A then A' .- e:t' is 

an instance of A 	e:T. 

To see that, in general, an expression does not have a 

principal type under a particular set of assumptions, let A be 

{x:i 1 ,X:i 2} and the expression be just x, then the possible 

derivations are A and A - x:i 2  and neither of these is an 

instance of the other. In fact, if the type inference system is to 

be used to handle overloading, we do not want it to have that 

property. However, we shall see that, when A is finite, the role of 

principal type can be played by a finite number of types. 

The following lemma will be useful when proving the 

completeness of the type assignment algorithm. 

Lemma. If U1  is an instance of 	and u is also an instance of 12 

and all the type variables in 	are distinct from those in 'L2 then 

is an instance of <1iT2> 

proof: Let S1  and S 2 be minimal substitutions such that S1 1 1=u1  and 
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Now, since. s1  and S2  are minimal, dom S1  is a subset of 

those type variables which occur in T and similarly for S2 . Thus  S1  

and S2  have disjoint domains and we can define their simultaneous 

composition S  But then 

S<T 1 ,T 2> = <u1 ,l)2> 

as requiredJj 

The previous result is easily extended to any number of types 

or to larger syntactic constructs involving type variables, e.g., 

sets of assumptions or statements like A I- e: -r. 

A particular case of special interest to us arises when, in the 

previous result, u and u 2  are the same type u because then it 

follows that j is a common instance of T and of 

The following result states the completeness of T 

Proposition 8(Completeness of T). Given an expression e  if there is 

a type u and a set of assumptions B such that 

B I- eu 

holds, then 

(1) T(e) succeeds; 

(ii) If T(e)(A,T)  then there is a subset B' of B such that 

B' I- e:u is an instance of A I- et. 

proof: by structural induction on the derivation tree of B 	e:u. 

basis: the derivation consists of just a TAUT step and e is a 

variable x'  i.e.,  B - x:u and x: u is in B. Now T(x) succeeds with 

({x:8},8), for some new variable 	, and so, if we take B'={x:u}, 
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B' - x:u is obviously an instance of A I- x:. 

induction step: we have three different cases to consider 

accordingly to the inference rule used in the last step of the 

derivation of B 
- e:u 

case COMB: e is e 
 1  e  2 

 and there are derivations of B 
- e1 :u'+u and of 

B e
2 
 :u'. Now, by the induction hypothesis, T(e 1 ) and T(e2 ) succeed 

and, letting (A.,T.)=T(e.,) for i=1,2, there are subsets B and B of 

B' such that B i I- e1 :u'-u is an instance of A1 - e1 : 1  and 

B 	e2 :u' is an instance of A2  - e2 :t2 . To show that 

where 8  is new, succeeds it is suficient to notice that, since we 

assume that all the type variables in A1 .- e1 :t 1  are different from 

those in A2  I e2 :t2  an d from 8, u'-'-u is a common instance of T and 

of  ¶2+8. Thus T(e1e2 ) succeeds with A=U (A 1  U A 
 2 

 ) and r=U B  where 

Further, by (ii) prop. 6, B U B I- e1e2 :UB is an 

instance of U(A 1  U A) I- e1e2 :U8 and part (ii) follows by taking 

B' = BI u B. 

case ABS: e is xx.e', u is u1~u' and there is a derivation of 

B U Ix: u1 } I- e':u'. Now, by the induction hypothesis, T(el) succeeds 

with (A',t') and there is a subset BI of B U {x:u1 } such that 

B e':u' is an instance of A' I- e':t'. There are three possible 

alternatives to consider: 

there are no assumptions about x in A' and then T(Ax.e') 

succeeds with A=A'=A' and 	 Now, since B is an instance of A' 

it does not contain any assumption about x and thus is a subset of B 

and so, if we take BI=B!, B' 
- Ax.e':o1+u' is still an instance of 

A' 	Ax.e' 	because B  does not occur in either ' or in A'. 

there is exactly one assumption x:v about x in A'. Then 
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T(Ax,e') succeeds with A=A' and r=vr'. Now, since A'=A U {x:v}, B 

must 	be 	the 	same 	as 	BI U {x:u1 } 	and 	thus, 	since 
x 

U {x:u} j- e':u' is an instance of A U {x: v} - e':t', then 

B 	I- Ax.e':u1+u' is also an instance of A I- Ax.e':v~ i' and part 

follows by noticing that B is a subset of B. 

there are two or more assumptions x:v1, 
..., 

x:v about x in 

A'. Now, since B is an instance of A', x:01  must be in B and 

further u must be a common instance of v i  V ..., 	 but then 

U(1,.., ''k  succeeds and thus, if U is the unifying substitution 

returned by U, T(xx.e') succeeds with (UA',U(v1+t')). It also 

follows from (ii) Prop. 6 that B 	e':u' is still an instance of 

UA' }- e':UT' but then, taking B'=B 	B' J- Ax.e 1 :u1 +u' is also an 

instance of U/i' - Ax.e':U(v1 -.-t 1 ). 

case LET: e is let x=e 1  in e and there are derivations of B I- 6 1 :01 ,  

..., B I- e:u and of B U {x:01 ,..,,x:u) Also, by the 

induction hypothesis, T(e 2 ) succeeds and, letting 

there is a subset B2  of B U {x:01 , ... ,x:u} such that B2  - 62:0  is 

an instance of A2 	e2 :T2* We have two possible alternatives: 

(1) there are no assumptions in A2  about x, and so T(let x-e 1  in e2 ) 

succeeds with A=A2  =A2  and -r-r 2  as we wanted. Furthermore B2  does 
S 

not contain any assumptions about x since B2  is an instance of A2  

and there are no assumptions about x in A2 . So B2  is a subset of B 

and, since B2  I- (let x=e 1  in e 2 ) : u must still be an instance of 

A2  (let x=e 1  in e2 ):T2 , clause (ii) also holds. 

(ii) there is one or more assumptions x:vl 
..., 

x:v about x in A2. 
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In this case B 2 , being an instance of A2
9 

contains at least one 

assumption about x  and thus n is non-zero. So, by induction, T( 1 ) 

11 	 k  succeeds with some pair (A 1 ,t1). Now let (A1 ,'r 1 ), ..., (A1 ,) be 

new 	trivial 	variants 	of 	(A1 ,t 1 ). 	To 	prove 	that 

succeeds it is enough to show that its 

arguments have a common instance. Now, since B2  is an instance of 

A 2 , for each j=l,...,k there is i. such that <u. ,...,u. > is an 
3 	 1 	k 

instance of <v 1 ,.,, 9 Vk> Also, by induction, there is a subset B'. of 

B such that B 	e1:u 	is an instance of A1  I- e 1 :T 1  and, then, 

also of A I- e1:T i since the last two are trivial variants of each 

other. So, noticing that the variables in each of T 1 , .., T are 

all different from the variables in the others, <u ,... ,o. > is an 
ii 	1  

instance of 	 Also, since the variables in 

are all distinct from the ones in 	 it follows that 

<U. ,. .. ,u. > is a common instance of the last two as we wanted. So 
' 1 

U succeeds and then, if U is the substitution returned by U, 

T(let x=e 1  in  e2)  succeeds 	with 	A = 	U A U ... U A) and 

= 	as we wanted. Now, to prove part (ii), the discussion above 

proves the existence of a substitution S such that 

s(A 2  I- e2:T2) = B2  I- e2 :u 

and 

I- 	e 1 :T) = B , 	I- e1 :u 

for 	j=l,. . .,k. But then, by 	part 	(ii) 	of the 	unification 	lemma, 

there is a substitution R such that S = R U and then 

B 2  UBU ... UB=RA 
X 
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is a subset of B arid, since we also have 

u =R(U,) =RT, 

part (ii) holds.tJ 

It is clear that the proof above could be easily adapted to 

suit 11  and the alternative type assignment algorithm defined at the 

end of the last section. Thus the following theorem holds for both J-
and I.! provided we define principal types with respect to in a 

similar way to what we did using 

Theorem 2. If for some type u and assumptions B it is possible to 

infer 

B 	e:u 

then there is a principal type of e. 

8. Type schemes, assumption schemes and type inference. 

This section is concerned with providing a description of the 

set of types which can be inferred for an expression from a given 

set of assumptions. In fact we shall see that it is possible to 

define an algorithm which achieves that purpose for any expression 

and for a large class of sets of assumptions which can be described 

in a finite way. 

We start by noting that if a type T can be inferred for an 



expression e from a set of assumptions B then for any substitution 

[t./a.] such that the a. do not occur in B we can also infer the 

type [t.Ia]t for e from B by prop. 2 since the substitution leaves 

B unchanged. That is, any type of the set 

for any types ti,... 

where the a. are the variables which occur in T but not in B, can be 
1 

inferred for e from B. 

The above discussion provides part of the motivation for 

introducing a new class of terms to describe sets of types of that 

form. 

Definition. A type scheme r is either a type T or a term of the form 

Va 1
, 
 *  . cx t 

n 

where t is a type and a 1 ,... ,cz are type variables which will be 

called the generic variables of in. 

Note that types form a subclass of the class of type schemes. 

We will say that a type u is a generic instance of a type 

scheme 11 or that Tj subsumes o and write fl>u iff either Tj is u or i 

is of the form Va 1 .. .at and there are types T 1, T such that 

Note that the set of types which are generic- instances 

of a type scheme Va 1 .. .ct is precisely 

for all types T 1 ,... ,t}. 

We extend > to a relation between type schemes 71 and r' by 

saying that Tj subsumes ' iff every type subsumed by ' is also 

subsumed by r. Note that > is reflexive and transitive. From now on 
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we will identify type schemes which are equivalent under >. 

We will say that a type variable occurs free in a type scheme 

Va
1 
 . .a 

n  r iff it occurs in and is not one of the generic variables 

a l l ... ,a. Note that if B i g ... ,8 are distinct type variables which 

do not occur free in Va 1 0a t then VCI 1 ...a T and V 1 ...B ([8./a. ]) 

are equivalent under >. 

Given a type scheme Tj we will let a substitution S act on Tj by 

acting on the free variables of r while renaming, if necessary, the 

generic variables of r to avoid clashes with variables involved in S. 

The following result provides a syntactic characterization of 

>0 

Proposition 9. A type scheme 	n  subsumes a type scheme 

YB1. 8rnV iff 

there are types 	.0 ,1 such that 

the
3  

8. 	 1 ** * 
do not occur free in Va ..cz 1. n 

proof: assume Va 1 .. .at subsumes YB1... 8m" Then, in particular, u 

is a generic instance of Va 1 . .* ai and thus there are types 

such that u= [T./a.]T. Now every variable occurring free 

in Va1 .. .ai also occurs in each type subsumed by the type scheme. 

But then since [a/B 1 ,... ,cz/BJu is a generic instance of 

for any variable a, none of the B.  occurs free in Va 1 .. .a. 

Reciprocally if u=[T./a.]T and the B..  do not occur free in 

then for any types 

[u./B.J ['./a] 'r 
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since each B. either is one of the a. or does not occur in T at all, 

and so Va 
1 	 1 
. a t subsumes YB 	u as we wanted.[J n 	 m 

The following proposition shows that > is preserved by 

substitutions 

Proposition 10. For any type schemes r and r' and for any 

substitution S  if i subsumes ' then Sri  also subsumes Sri'. 

proof: Let 71 be 	 and ri'  be YB 1 . BU Without loss of 

generality we can assume that neither the a. nor the B. are involved 

in S.  But then 

Sri = Va1 . .a5t 

and 

Sri' -  Va l  .. .BSu 

and the conclusion follows from the previous result because since 

the B. are not involved in S and do not occur free in n they also do 

not occur free in 5r. Further since there are types -E l  T such 

that u=[ST./cz.]T  we still have 

So = [ T./a.]ST 

because the a. are not involved in S.E1 

Given a set of variables V and a type T we define the closure 

of T under V, V(T), as being the type scheme Va 1 ...at where 

a1 ,... ,a are all the type variables occurring in T which are not in 

V. For any assumptions A we will use 4(T) to denote the closure of t 

under the set of type variables which occur in A. 

/V. 
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Returning to the set of types which can be inferred for an 

expression e from a set of assumptions B we note that the initial 

result of this section can now be expressed by saying that if we can 

infer u for e from B then we also can infer any generic instance of 

B() for e. 

Using the above definitions we can now provide a 

characterization of the types that can be inferred for an expression 

from a finite set of assumptions. 

Proposition 11. There is an algorithm which, when given a finite set 

of assumptions B and an expression e, returns a (possibly empty) 

finite set of type schemes 	 such that a type u can be 

inferred for e from B 1ff it is subsumed by one of the m. 

proof: we first note that there is an algorithm, similar to the 

unification algorithm, which when given two types (or two tuples of 

types) decides whether or not the second type is an instance of the 

first and, in the affirmative case, yields a minimal substitution 

which when applied to the first argument gives it second argument. 

Using this algorithm we can define the desired algorithm as follows: 

Given e and B we first apply the type assignment algorithm T to 

e. If T fails then we return the empty set and the proposition holds 

in this case because then there are no types which can be inferred 

for e from B. Otherwise let T succeed with A and T and assume that A 

consists of the assumptions 

S :T , ..., X :T 
11 	nn 

where the 5. are not necessarily distinct. Similarly assume that B 
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consists of the assumptions 

Now there are at most a finite number of tuples <j 1 ,...,j> such 

that X is identical to yj  for each i. For each of these tuples if 

there is a minimal substitution S  such that 

S<T l ,., Tn>=<u. ,...,u. > 

we add the closure of ST under SA to the set of type schemes 

computed by the algorithm. 

Now to see that the algorithm meets our claims we note that for 

each of the substitutions S  above, we can infer St for e from SA  as 

well as any other type in the closure of ST under SA. Also, since SA 

is a subset of B, we can also infer all those types for e from B 

instead of SA.  Reciprocally assume we can infer u for e from B. 

Then, since is a principal type of e, there is a substitution R 

such that RA  is a subset of B and RT=U. Now the restriction of R to 

the type variables occurring in A must be identical to one of the 

substitutions S considered in the algorithm and, to show that u can 

be obtained from Si by instantiating some of the variables of the 

latter which do not occur in SA , we can assume that all the types 

variables in A and in i are distinct from the type variables in B. 

Then any variable in T not occurring in A is left unchanged in 5t 

and also does not occur in SA and those are precisely the variables 

that have to be instantiated in St to obtain u.E1 

The remainder of this section will be concerned with extending 

the previous proposition to a larger class of sets of assumptions of 
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P finite character. 

Definition. An assumption scheme is a term of the form 

x:r 

where x is an identifier and n is a type scheme. 

The concept of subsumption extends naturally to assumption 

schemes. We will also say that a set B of assumption schemes 

subsumes another set B' of assumption schemes iff every assumption 

scheme in B' is subsumed by one of the assumption schemes in B. 

Given a set of assumption schemes B we say that we can infer 

the type t for e from B iff we can infer T for e from the set of all 

assumptions which are subsumed by assumption schemes in B. It is 

easy to see that propositions 1 and 2 still hold for type inference 

from a set of assumption schemes. In the case of proposition 2 this 

follows from the invariance of > under substitutions. From this it 

also follows that if we can infer t for e from B we then can also 

infer any generic instance of the closure of T under the set of type 

variables which occur free in B. We will let B(t) denote that 

closure. 

To prove that the proposition 11 still holds for finite sets 

of assumption schemes we need the following auxiliary result. 
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Proposition 12. There is an algorithm which when given a type scheme 

r and a type T either fails or returns an instance ' of T  which is 

also a generic instance of r. Further 

The algorithm fails iff there is no such instance of . 

If the algorithm succeeds with i' then for any instance ' of t 

subsumed by T1 there is a substitution R such that v=Rr'. Moreover R 

leaves unchanged any variable occurring free in r. 

proof: the algorithm can be defined by: 

let T be a trivial variant of T such that the variables 

occurring in 	do not occur free in T1 and are distinct from the 

generic variables of r. 

assuming i to be Va . .au apply the unification algorithm to u 

and 	but treating variables in i other then the a. as if they were 

primitive or constant types. If the unification algorithm fails then 

the algorithm fails. Otherwhise let U be the unifying substitution. 

Then the algorithm succeeds with UT 1* 

Now, if the algorithm succeeds, T 1 =UT 1  is clearly an instance 

of T. Also, since T'=UU and the only variables instanciated by U in 

u are the generic variables cx 1 ,... ,a, t' is a generic instance of T1. 

To prove (i) and (ii) let v be an instance of -r which is 

subsumed by 'v. Then v is also an instance of -r 
1* 
 Let S be the 

minimal substitution such that and let u 1 , ... ,u be types such 

that v=[u/cx]u.  Now S and [u./a.] have disjoint domains and so we 

can take their simultaneous composition U0 . But U0  unifies T and u 

and so, since it leaves unchanged any variable occurring free in n, 
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the unification algorithm, when applied in the conditions above, 

succeeds with some substitution U. To prove (ii) we note that there 

is a substitution R such that U0 zRU and thus v=U01=B'. Further 

since U involves only variables occurring in and the c. it must 

leave unchanged the variables occurring free in n. But then for any 

variable a occurring free in one has 

a = U 0 a = RUa  = R 

as we wanted.fl 

The above algorithm is easily extended to the case of tuples of 

type schemes and tuples of types by renaming, if necessary, the 

generic variables of the type schemes to ensure that each generic 

variable occurs in only one of the type schemes, after which the 

unification algorithm can be used in a way similar to the one above 

but applied to tuples of types. 

We can now generalize proposition 11. 

Theorem 3. There is an algorithm which, when given a finite set of 

assumption schemes B and an expression e, returns a (possibly empty) 

finite set of type schemes such that •a type j can be 

inferred for e from B iff it is subsumed by one of the 

proof: the proof is similar to that of prop. 11 and involves the use 

of the algorithm of the previous proposition. The algorithm is 

defined as follows: 

We first apply the type assignment algorithm to e. If it fails 

the algorithm returns the empty set. Otherwhise let T succeed with A 
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and t and assume A consists of the assumptions 

x1 :t 1 , 	.. , xri :l n  

and assume also that B consists of the assumption schemes 

Now for each tuple <j 1 ,. ..,j> such that y. is X. for each i t  we 

apply the algorithm of prop. 12 to <p. ,...,p. > and <'tl_•Tn>•  If 

it succeeds with an instance <t...,T'> of <c ,...,T > let S be the 
1 	n 	1 	n 

minimal substitution which when applied to the latter gives the 

first. We then add the closure of S1 under the variables occurring 

free in the p. to the set of type schemes returned by the algorithm. 
• 1 

The same argument used in the proof of prop. 11 can be used 

here to prove that any type subsumed by one of the r. can be derived 

for e from B. Conversely assume we can infer o for e from B. Then, 

since r is principal, there is a substitution S' such that u=5't  and 

SA is a subset of the set of all assumptions which are subsumed by 

at least one of the assumption schemes in B. So there is a tuple 

tin > such that SIT 
i 
 is subsumed by p j 	 But then the 

application of the algorithm of prop. 12, in the algorithm above, 

for this tuple <j 1 ,...,j> succeeds. Further there is a substitution 

R, which leaves unchanged any type variable occurring free in the 

such that ST=RST  for each i. Let r be the type scheme 

returned by the algorithm corresponding to the tuple <j 1 , ... ,j>. We 

will now show that S'I  is a generic instance of n . For that purpose 

let l'• ,a be the type variables occurring in I but not in A nor 

in SA, then we claim that 

SIT = (R+[S'ci./cz.])St. 



58 

In 	fact for 	any variable a occurring in t either a is one of the a. 

in 	which case it is left unchanged by both S and R or occurs in A in 

which 	case RScx =S'a 	since RSA =S'A, 	or it does not occur in A, in 

which 	case it 	is left unchanged by S, but occurs in SA and then we 

have by the same argument RSa =S'cz. Further we already know that any 

variable 	in the domain of R does not occur free in thep
j 
	and the 
1 

same 	applies 	to the 	a • 	since 	they do 	not occur 	in SA. 	Thus any 

variable 	instantiated 	by 	R+[S'ci./a.] 	in St 	must be 	a 	generic 

variable of i 	.t 
p 

The corollary bellow 	follows from noting that, in the 

previous proof, if B contains at most one assumption about each 

identifier x, then there is at most one tuple <j1,..  .,j> such that 

Y . 
31 

isx.. 

Coro7lary 3. Let B be a finite set of assumption schemes containing 

at most one assumption scheme about each identifier, and let e be an 

expression. Then, if some type can be inferred for e from B, there is a 

type scheme n such that any type which can be inferred for e from B 

is a generic instance of ii. 
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9,. Type assignment and overloading. 

By overloading an identifier we will mean using that identifier 

to denote more than one value. 

The most common example of overloading is provided by 

arithmetic operators like + being used on both reals and integers. 

From a strict point of view this does not imply that + denotes two 

different values. As a matter of fact if, e.g., the set of integers 

denotations is disjoint from the set of real denotations, one could 

use a map which would work for botci types of operands. Nevertheless 

if one wants to allow, like Algol 68 does, the extension of an 

operator like + to other arbitrary types one can not rely on such 

assumptions and one is forced to regard + as denoting more than one 

value. 

The way the ambiguities that arise from overloading are handled 

is by using typechecking considerations to decide which value is 

intended by each occurrence of an overloaded identifier. This 

implies that each of the values represented by an overloaded 

identifier has type(s) distinct from those of the others. The 

process of identification just referred can be regarded as a 

transformation which produces a copy of the original program but 

with overloaded identifiers replaced by normal ones, e.g., each 

occurrence of + would be replaced by either +. or + 
mt 	real 

In this section we take the above point of view about handling 

overloading by means of a program transformation a step further to 

allow declarations like 



let twice = Ax.x+x in 

to be treated, if neccessary, as overloading twice as a consequence 

of the overloading of +. 

Let A be any set of assumptions and be a function which maps 

each assumption in A to an identifier. The purpose of 0 is to 

associate with each assumption in A about an overloaded identifier a 

non-overloaded identifier specifying the value to which that 

assumption pertains, i.e., in the case of example above, 0 would map 

+:int+int-oint to +. 	and +:real+real+real to + 
mt 	 real 

We will now introduce an algorithm which, when given a 

derivation tree of A !- e:T and a map 0 produces another expression 

such that there are no overloaded identifiers in e and OA J-e:T still 

holds where(DA ={(x:t):iJ x:t in A). 

We will define the algorithm recursively and accordingly to the 

rule of inference used in the last step of the derivation. 

In the case where the derivation consists of just a TAUT step e 

is an identifier x and x:t is one of the assumptions in A. In this 

case we take o (x: T) as Z. 

In the case where the last step of the derivation is a COMB 

step e is an expression of the form e 1  e  2 and the subderivations are 

A i-e 1 :t'+t and A I-e2 :T' for some type T. We then take e 1e 2  as  e. 

If the last step is an ABS step then e is Ax.e', T is u'-+u and 

the subderivation is A U{x:u'} I-e':u. Let Z 1  be the tranformed 
X 

expression of e' by [x/x:u'], then Z is Ax.'. 

Finally if the last step is a LET step then e is of the form 
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let x=e' in e" and the subderivations are A I-e':t. for i=l,...,n and 

AU{x:r 1 ,...,x:1} I-e":1. We then apply the algorithm to each of the 

A to obtain Since many of these may be identical we 

will, to avoid unnecessary growth of the transformed expression, 

assume that, without loss of generality, 

i=='• =i_. 

k1 	k2 1 

=... = I .  

k 	n 
p 

Then we also apply the algorithm to the derivation of 

AU{X:1 1 ,...,X:T} - e " : T 

and to 

-1' 	/Tk .X/"XT] 

p 	 p 

where the x. are new identifiers, to obtain a". Finally the 

transformed expression will be 

let 	in 

let x =' in 
pp 

It is easily 

expression satisfies 

note that the number 

a declaration like th 

seen, by induction, that the transformed 

the requirements stated previously. We further 

of versions introduced by the transformation of 

at of twice is kept to a minimum. 

We note on passing that we believe it is possible to use 

derivation trees to perform a transformation, perhaps more 

interesting from a practical point of view, that rather than 
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introducing several different versions of a declaration like that of 

twice would instead parametrize it on the overloaded objects present 

on it, i.e., something like 

let ptWice = Af.AC.fxx in 

and transform every occurrence of twice in the scope of the 

declaration into either ptwice int or ptwice 
+real as appropriate. 

Before proceeding we note that two different derivations may 

lead to different transformed expressions as can be seen from the 

following example (where K is assumed to denote the constant 

combinator): 

K 1 +. 

In fact, taking the usual assumptions about the types of the 

identifiers involved, there are two possible derivations of the type 

mt for the expression but which lead to transformed expressions 

which in one case are obtained by replacing + with tint and in the 

other replacing it with + real 

We will now discuss type assignment in the presence of 

overloading. From the example above we realize that only expressions 

for which all possible derivations lead to equivalent transformed 

expressions should be accepted. As a matter of fact some restriction 

of this kind was to be expected since some expressions like, for 

instance, + do not even have a definite value in the presence of 

overloading. We will alter the algorithm of Theorem 3 to ensure that 

the condition refered above is satisfied. 

Assume we are given a finite set of assumption schemes B, a map 

as before, and an expression e. We would start by applying the 
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type assignment algorithm T to e to obtain a principal type t of e 

and an associated set of assumptions A. Then, assuming that A 

consists of the assumptions 

,x:t 

and that B consists of 

we would proceed as in the algorithm of theorem 3 by considering 

all the tuples <j 1 ,... ,j> such that Y. is x. for each i and such
Ji  

that the algorithm of Proposition 12 succeeds when applied to 

<p.. ,...,p. > 	and 	<r 19 ...,i>. 	However 	we would 	reject the 

expression, as leading to ambiguity, if for two such tuples 

and <j,...,j'> we had Cx.:p..) 	(x.:p.,) for some i. 

Intuitively we are forcing every occurrence of an overloaded 

identifier in the let-free form of e to be associated with the same 

particular value of that identifier independently of whatever 

derivation tree we consider. This in turn garantees that whatever 

derivations we take we always obtain equivalent transformed 

expressions 

Now, since there are many useful expressions which may lead to 

ambiguity it is convenient to enable the user to eliminate the 

ambiguity in those cases where it can not be resolved in the way 

outlined above. To achieve this we can introduce type constraints 

similar to those of ML of the form e:T. The meaning of such term is 

to constrain any type assigned to e to be an instance of r. In the 

presence of those constraints we would start by replacing each term 

e:i with constrain e, where constrain is a new identifier, and add 
•1 
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the assumption scheme constrain 
t 	1 ***  
:Va   	

n 
a -r--r -r--rto b where the a 1.  . are 

all the type variables in T. After this we could proceed as above. 

So far we have only considered the overloading which arises 

from overloaded variables occurring free in the expression. We will 

now extend the language to enable the arbitrary overloading of an 

identifier. For this purpose we will introduce a construct of the 

form 

let x = e1  

and x = 

in e 

which declares x as denoting both e 1  and e in C3 . We will now show 

how to type such declarations provided that we restrict them to the 

outermost chain of declarations in an expression. Thus to type the 

expression above under a set of assumption schemes B we would start 

by computing the type schemes that could be inferred for e 1  and for 

e2 . Now if e 1  and e had a type in common we would reject the 

expression as leading to ambiguity. Otherwise we would add to B the 

assumption scheme x:r for each of the type schemes r computed for 

and e 2 . Finally we would type e 3  using this extended set of 

assumption schemes. 
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CHAPTER II 

A type Bcheme inference system 

1. Introduction 

The theory supporting the polymorphic type discipline of ML, 

the metalanguage of the LCF system [Gordon et al 791, was studied in 

[Milner 781. Here we reformulate that theory by using quantifiers to 

make the generic type variabLes of [Milner 781 explicit. This leads 

to a set of rules for inferring type schemes for expressions which 

is in contrast with chapter I where the inference system only dealt 

with types although type schemes were used to describe the set of 

types that could be derived for an expression. The main advantage of 

such a reformulation is that it enables us to prove both the 

completeness, conjectured in [Milner 781, of the type assignment 

algorithm W and the existence of principal type schemes of an 

expression under particular sets of assumptions. Those constitute 
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the main results of this chapter. Finally we will also study the 
L 

relation between the inference system of chapter I and the one 

defined here. 

2 Preliminaries 

We will use the same programming language as in the previous 

chapter and the same set of types as before. However, for a smoother 

treatment 1at)er, we will change the syntax of type schemes which 

will now be described by 

i 

Nevertheless we will abreviate 

Va 
1 
 .. . 	

n' .i  

to 

Va ...a .T 1 	n 

where convenient. 

Let Ts denote the set of type schemes. The semantic function T 

of chapter I can be extended to type schemes by 

PVcz.iih = 	TE n]J[I/cz]. 
IEV 

Using this semantic function for type schemes one extends the 

relations v:t, p:4, A J= e:T and A to terms involving type 

schemes instead of just types. 

To conclude this section we present some properties of T that 

will be required later. 
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Lemma 1. T[{t/a}rij4 =T[nJj4[T[t]J4i/a]. 

proof: the proof is easily obtained by structural induction on r.0 

Lemma 2. If ii>ri' then T[ricTri'1J4, . 

proof: We first note that, by lemma 1, given any type scheme 

Va 
1 *  *  . • n 

a T 

if B 1 , ..., B are distinct type variables which do not occur in t 

then 

Tj{ Va 1 .. .aT]) = T1 YB 1 .. .B{B./cz.}tfl4. 

Now let Ti be Va...a t and i-i '  be YB ...B t I . In view of what has 1 	n 	 1 	m 

just been said we can assume without loss of generality that the B. 

do not occur in t and are all distinct from the a.. Note also that, 
:i 

since Ti>tit,  there are types T
i 
 such that T' ={T./a.}T. But then 

TE{Y5 1 ...8t'1J 41 = (= {TT'Jki[J/BI I 

= fl {TE{T./a.}T[J. 
3 
/B.  

3 	3 
] J J.cTl} 

= fl {T[T1j4i[(TET.]4[J./8.])/a. 1  ;J.  3 /B.  3 	3 
} I J.EV}. 

But since we assumed the B. do not occur in T we have 
3 

	

TffVB 1 ...BT'JJ4i = ( 	{TE[T]J4i[(TEt.]j4[J. 
3 
/8.])/cz. 1  ] I J 

3  
.cV} 

3  

2 r') {TIIT]3441./a.] I I.Ev} 

= TE[Va 1 . . .atlh 

as we wanted.D 
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3.. Type inference 

From now on, and in contrast with chapter I, we shall assume 

that A contains at most one assumption about each identifier x. 

For assumptions A, expression e and type scheme r we write 

A I-e:n iff this sentence may be derived form the following inference 

rules: 

TAUT: 	A 	x: Ti 	 (x: n in A) 

A 
INST: 	 (n>n') 

A I- 

A 	e: Ti 

GEN: 
	

(c does not occur free in A) 
A I- e: Va. n 

A I- e:T'-T, A I- e':T' 

COMB: 
A I- 

A 1J{x:T'} I- e:t 
ABS: 

A 

A 	e:ri, AU{x:} - e':i 

LET: 
A I- let x-e in e':T 

As in chapter I, the following example of a derivation is 

organized as a tree, in which each node follows from those 

immediately above it by an inference rule. 



i:Ya.ac& I-i:Va.a+a 

X:cz 	 INST 	 i: Va. acz }-i: Va. a+a 

ABS 	i: Va. cicz I—i:(a+cz)+(cz+cz) 	 INST 

- x.X:a-z 	 1-:Va.a -i:Qa 

GEN 	 0 	 COMB 

Ax.x: Va. cx - a 

LET 

 -letj=XX.X in ii:ac 

The semantic soundness of type inference is expressed by the 

following result which also holds for the stricter relation 

Theorem 1 (Semantic soundness of type inference). For any expression 

e, type scheme Ti and assumptions A if 

A t-e:n 

holds then 

A }=e:n 

also holds. 

proof: since the proof, by induction on the structure of derivation 

tree of A ._ e: n, is an extension of the proof of the similar result of 

chapter I we will only consider here the cases where the the last 

step of the derivation is either an INST or a GEN step. 

case INST: in this case the antecedent is A I—e:n' and in is a generic 

instance of '. Then the result follows immediately since then 

Tif WI* is a subset of T 1J4 for any valuation 4. 
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case GEN: in this case r is Va.' and the antecedent is A - e:ri' where 

a is such that it does not occur free in A. Now, let 4) be any 

valuation and let p be any environment such that p:
4)
A. Then, since a 

does not occur free in A, we also have P:4)[I,alA for every I in V. 

But then, by the induction hypothesis, Ef[ejlpc Tifri' lJtp[I/a] for 

every I and thus Ee]p ETftVa.1l'4) as we wanted.E1 

It is interesting to point out that if we had restricted our 

attention to the relation = then the inference rule LET could be 

relaxed, by considering the case where x does not occur free in e', 

without affecting the semantic soundness of type inference. 

We will need the following lemma latter. 

Lemma 3. If A 
x 	

ri U{x:' } I—e:ti 
0 	 x 	 0 

holds then A U{x:} t- e:n also holds 

for any type scheme ii such that i>r'. 

Proof: We construct a derivation of Au{x:n} - e:T10  from that of 

AU{x:ri'} -e:n0  by substituting each use of rule TAUT for x:ri' with 

x:ri followed by an INST step. Note that GEN steps remain valid since 

if a occurs free in r then it also occurs free in ri'.Ll 

As in the previous chapter the invariance of type inference 

under substitution of types for type variables plays a major role in 

the proof of the existence of principal type schemes. 
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Proposition 1. If S is a substitution and A I- e:n holds then 

SA - e:Sn also holds. Moreover if there is a derivation of' A i- e:n of 

height n then there is also a derivation of SA I-e:STI of height less 

or equal to n. 

proof: by induction on the height n of the derivation of A }- e: Ti . 

basis: in this case the derivation must consist simply of an 

instance of rule TAUT, i.e. A - x:ri for x:n in A. Then x:Sn is also in 

SA and so SA ).-x:Sn also holds. 

induction step: we have several different cases to consider 

accordingly to the rule of inference used in the last step of the 

derivation. 

case INST: the result follows from the induction hypothesis and from 

the fact that > is preserved by substitutions. 

case GEN: in this case ri is of the form Va. rt', the antecedent is 

A I.-e:n' and ci does not occur free in A. Let a' be a type variables 

not occurring free in A nor in ri' and such that S does not involve 

a'. Now by the induction hypothesis there is a derivation of 

S[a'/a]A I-e:S[a'/a]ri' 

which, since neither a nor ci' occur free in A, is just 

SA -e:S[ci'/a]i'. 

Now, since cx' does not occur free in SA, we can infer 

SA I_e:Va'.S[a'/a]ri' 

and the desired conclusion follows by noting that S(Va.n') and 

Va'.S[a'/a]ri' are identical up to renaming of generic variables and, 

thus, equivalent under > 

other cases: follow by a direct application of the induction 

hypothesys to the antecedents.0 
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4 The type assignment algorithm 11 

In contrast with chapter I where it was shown that if a type 

could be inferred for an expression then there was also a most 

general or principal type, this is no longer true for the type 

scheme inference system considered in this chapter. To see this 

consider the expression K(fx)(fy) where K is the constant 

combinator. Then we can derive type schemes for the expression if we 

assume, for instance, f:Va.cz+a or f:Vcz.cz-B. It is however easy to 

see that there is not a more general assumption scheme about f, 

except for the trivial f:Vcz.ci, from which a type for the expression 

can be derived, and which includes as "instances", in some sense, 

both the assumptions considered above. 

Nevertheless, again in contrast with chapter I, we will see 

that if a type scheme can be inferred for an expression from a 

particular set of assumptions then it admits a principal type scheme 

under those assumptions. 

From what has been said it is then natural that a type 

assignment algorithm should take as arguments not only an expression 

but also a set of assumptions. In fact the type assignment algorithm 

W to be presented now, and which is essentially a translation into 

our notation of the one in [Milner 78], takes as arguments an 

expression e and a set of assumptions A and returns, when it 

succeeds, a type T and a substitution S such that SA }-e:T. As a 

matter of fact we shall prove later that not only t is the most 

general type amongst those which can be inferred for e from SA but 
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also that SA itself is most general amongst those instances of A 

which make the derivation of a type scheme for e possible. 

Definition. W(A,e) = (S,t) where 

If e is x and there is an assumption x:Va 1 . . .at' in A 

then S = Id and t = [B. 
1 1 
/a.]here. the B 1  . are new. 

If e is e 1  e  2 
 then 

let W(A,e 1 ) = (S19 t 1 ) 

and W(S1A,e2 ) = 

and U(S21 ,' 2- B) = U where 'O is new; 

then S = USS and t = UB. 

If e is Ax.e 1  then let B be a new type variable 

and W(AU{x:B},e1 ) = (S1 1'1 ); 

then S = S1  and i = SB+T. 

If e is let x=e 1  in e2  then 

let W(A,e1) = 

and W(S1AU{x:S1A(t 1 )},e2 ) = (S2 ,'2 ); 

then S = SS and •t ='
2' 

remark: when any of the conditions above is not met W fails. 

The following theorem, which can be easily proved by induction 

on e using proposition 1, shows that W meets one of our claims. 

Theorem 2 (Soundness of W). If W(A,e) succeeds with (5,,) then there 

is a derivation of SA - e:. 
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Finally we note that since SA I -e:r holds then SA I-e:SA(i) also 

holds. We will refer to SA(t) as the type scheme computed by W for e. 

5. The completeness of W and principal types schemes 

In this section we prove the completeness of the type 

assignment algorithm W and use this result to prove the existence of 

principal type schemes. 

Theorem 3(Completeness of W). Given A and e, let A' be an instance 

of A and n be a type scheme such that 

A' I-e:n 

Then Ci) W(A,e) succeeds 

(ii) If W(A,e) = (P,n) then, for some substitution R, 

A' = RPA and RPA (ii) > . 

proof: The proof consists of two parts. We first prove that the 

theorem holds in general if it holds when the last step of a 

derivation of A' -e: n is not a GEN nor an INST step. In the second 

part we use structural induction on the expression e to show that 

the result holds for that special case. 

The first part of the proof can be done by induction on the 

lenght of the sequence of GEN and INST steps which constitute the 

last steps of the derivation of A' I-e:. It is enough to show that 
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the theorem holds for A'I-  e:r when it holds for A'I-e:n' and A' J- e: n  

is obtained from A' - e:' by an INST or a GEN step. 

In the case of an INST step we have r'>. But then, by the 

transitivity of >, we have liPS(n)>n as required. 

Assume now that A' I- e:ri is obtained from A' I- e:' by a GEN 

step, i.e. ri is Va.' for some type variable a which does not occur 

in A'. It is enough to show that a does not occur free in OA- ( H) 

because then, since RPA(fl)>r', we will also have 1P.4(fl)>Ya.T)'. Now, 

by definition, every type variable occurring free in PA(ri) also 

occurs free in PA. But then any type variable occurring free in 

RPA(n) also occurs free in A'=RPA and thus a can not occur free in 

RPA(n) as we wanted. 

We now turn to the second part of the proof. All we have to do, 

after taking in consideration the first part of the proof, is to 

prove that if the theorem holds for every proper subexpression of e, 

then it holds for e when the last step of the derivation of A' I- e:n 

is neither an INST nor a GEN step. We have several distinct cases to 

consider accordingly to e. 

case e =x: in this case the derivation is just an instance of rule 

TAUT, i.e. x:r is one of the assumptions in A'. Non, since A' 'is an 

instance of A, let R be the minimal substitution such that A'=RA. 

Then there is an assumption in A such that in = Rii0 . Assume in is 

Va .. .cz 'r. 1 	n 

Then W(A,x) succeeds, as we wanted, with (Id,[./ct.]'r) where the . 

are new type variables. Further A([/a.]t) and no  are identical up 
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to renaming of generic variables, and since 

R4([8.Icz.]t) = Rr 0  = 

we also have Rn 0 >n trivially. 

case e =e 1e2 : in this case the last step of the derivation of A' - e:r, 

must be an instance of rule COMB. Then n is a type t and the 

antecedents are A' l-e 1 :t'+t and A' I-e2 :T' for some type t'. By the 

induction hypothesis W(A,e 1 ) succeeds. Further if we let 

I)1,1 =W(A,e 1 ), there is a minimal substitution R1  such that 

A' =R1P1A 

R 1P1A(n 1 ) > 

Now let a l  9 ..., a be the generic variables of II I , i.e. all the 

type variables which occur in H 1  but which do not occur free in P1A. 

Then R 1  leaves the a. unchanged because we have assumed R to be 

minimal and so dom R 1 cFvars(P1A), Now, since t'+t is a generic 

instance of R1(Vcx1.,.a n JI  l' it follows from Proposition 9, 

chapter I, and because R1  leaves the a. unchanged, that there are 

types T 1 , •t such that 

T t T = ( R 1 +[[./ci.])r11 . 

Now A' is also an instance of P 
1 

 A and so the induction 

hypothesis implies that 1J(P1 
 A

t e 2 ) also succeeds. Further, if we let 

=W(P1 
 A

t e 2 ), there is a minimal substitution R 2  such that 

A' = R 2  P  2  P  1 
 A 

R 2  P  2  P  1  A(n 2 ) > 

As before, if 	 8m are the generic variables of 11 
2'  we can 

prove that R2  leaves the B. unchanged and that there are types T it 

..., T
m

1  such that 
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= (R2+[t/8.])n 2 . 

To prove that tl(A,e 1e 2 ) succeeds all we have left to do is to 

prove that, if B  is a new type variable, U(P 211 1 ,11 2+8) succeeds, We 

will do this by showing that 

U0  = [t./a.; 	 i/B] + R2  

is an unifying substitution. To show that U0  is well defined we note 

that 

{cz 1 , ..., a}c(Fvars(A)UNeW1 )\Fvars(P1A) 

{8i 	8} c(Fvars(P1A)uNew2 )\Fvars(P2P1A) 

dom R2 cFvars(P2P1A) c  Fvars(P1A)UNew2  

where New  is the set of new type variables used by W(A,e 1 ) and New  

is the one used by tJ(P1A,e2 ). From the inclusions above, and because 

B is new, it follows that the ci, B and  B  are distinct from each 

other and are left unchanged by R2  which proves that U0  is well 

defined. Now 

= (U0 112 )~ i 

but since 8  and the ci. do not occur in II 2 we have 

urr = ([t/B]+R2)n2 = 

and so 	 =' -o. Now, to see that we also have U0P2 11 1  

we first note that, since 

A' = R  2  P  2  P  1  A = R  1  P  1  A 

we have R1cx=R2P2cx for any type variable ci occurring free in P1A. 

But then, since every type variable occurring in P211 1  is either one 

of the ci. or occurs free in P 2 1 P A, we have 
i  

U0P2 11 1  = ([ -r./ci.; i , IB; i/8]+R2 )P•2 fl 1  

= ([TIa1 ]+R2 )P2n1  

= ([t./ci.]+R1)fl1 
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= t'+l 

because p2  leaves the a. unchanged, 

Since U0  unifies p2111  and 11 2~B, U(p2n1 ,n2+B) succeeds with some 

substitution U and thus ¶J(A,e 1e2 ) also succeeds, with (UP  2P1 ,UB), as 

we wanted. To prove clause (ii) of the theorem let R be a 

substitution such that U0 =RU. Then 

RUP2P1A = U0P2P1A 

= R2P2P1A = A' 

since none of the a., B. and B occurs free in P2P1A. Note also that 

we have trivially 

UP2P1A(UB) > UB 

and so, by the invariance of > under substitutions, we must also 

have 

RUP2P1A(UB) > RUB = (10B = 

as required. 

case e=Xx , e': in this case the last step of the derivation of 

A' 1-'e:ri must be an instance of rule ABS and thus T) is a type TT t  and 

the antecedent is A' U Ix: t} J-e':t'. Now let B  be a new type variable, 

then, since A' x U{x:i} is an instance of A U{x:B}, it follows from x 

the induction hypothesis that W(Au{x:B},e') succeeds with some pair 

(p',n') and that there is a minimal substitution R' such that 

A' U{x:t} = R'P'(A u{x:B}) 
x 	 x 

R'P'(A U{x:B})(fl') > T' 
x 

So W(A,),x.e') succeeds.with (P',PB+II') as we wanted. All that is 

left to show is that there is a substitution R  such that 

A' = RP'A 

0 
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RP4(P311') ; 

Let S be the minimal substitution such that A' =SA and let S0  be the 

restriction of S to those type variables which occur free in A but 

not in A . We will show that 
S 

R = 

satisfies the requirements above. First of all we note that R is 

well defined because R' is minimal and B, since it is new, does not 

occur free in A'. Further for every type variable a occurring free 

in A we have Sct=R'P'a. Also if a occurs free in A but not in AS  we 
S  

must have P'c*=a since 

mv P'FvarS(A5U{S:B})UNeW' 

where New' is the set of new type variables used by W(A 5U{x:B},e'). 

Thus, for any type variable cx occurring free in A but not in A5 , we 

have 

SP'cx = Sci = S 0  a 

and so we have proved 

RP'A = (R'+S0)PIA = SA = A' 

as we wanted. Note also that 

P'4(P'84'1I') > P'(A5U{x:B))(P'B11') 

since if a is a type variable occurring in P'8ll' and if a occurs 

free in PIA then a also occurs free in P' (A U{x:B}) because 

vars(P I B*II')CFvar 5 (A5U{XB))U1'.  

More precisely if a occurs free in PIA then a occurs in P'y for some 

variable y occurring free in A. Now if y does not occur free in A 

then 	P'=y 	because 	P' 	involves 	only 	variables 	
in 

Fvars(A5U{XB})UNeW'. But then a and y are the same type variable 



which is absurd because we have assumed that a occurs in P'B+n'. 

Finnaly to show that RP'A(P8+ii') >tT' let a1 , ..., a be those type 

variables which occur in !j' but not(free) in P'(Au{x:B}). Then 

there are types T i . ., It such that 

= (['r./a.]+R')fl' = ([t./a.]-i-R)ii'. 

It is easly seen that the a. are also the only type variables which 

occur in P'8fl' but not in P' (A U{x:8}) and thus 

= Va ... a(P+ii'). 

Further, since R'P'= r', we have 

= ([t. 1 	1/a.]+R)(PB-fl'). 

Finnaly, by the invariance of > under substitutions, 

RP'A(P'-..ii') > RP'(AU{x:B})(P'-n') 

and then it follows from the transitivity of > that also 

RP'A(P'-n') > TT t  

as we wanted. 

case e = let x=e1  in e2 : in this case the last step of the 

derivation of A )-let x=e 1  in e2 :r1 must be an instance of rule LET. 

Thus in is a type t and the antecedents are A' J-e 1 : 1  and 

A'U{x:r1 1 } -e 2 :i for some type scheme r. Then, by the induction 

hypothesis, .W(A,e 1 ) succeeds with some pair (P1 ,11 1 ) and there is a 

minimal substitution R such that - 

A' = R1P1A 

R1P1A(r11) > 

Now, by lemma 3, since A'U{x:1 11 ) - e 2  :T and R 1P1A(11 1 )>111  there is also 

a derivation of A'u{x:R 1P1A(11 1 )} l-e 2 :i. But 
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A'U{x:RPA(fl )J =R (PA U{x:PA(Ii )}) 5 	ii 	]_ 1 15 

and thus, again by induction, W(Au IX: P1A( 1 )},e 2 ) succeeds with 

as we wanted. Now there is a minimal R such that 

R 2P2 (P1AU{x:P 1A(n1 )})( 2 ) > r 

A'U{x:R P A(II )} = RP (P i 
 A 
s
U{x:P A(n )}). X 	11 	1 	22 

But then 

A' =RPPA 
X 	2lx 

M TM 

R1P1A(11 1 ) = R2P2P1A(11 1 ), 

Finnaly we must prove the existence of an R such that 

RP2P1A(112 ) > T 

A' =RP2P1A, 

Let R0  be the restriction of R to those type variables which 

occur free in P A but not in P A We will show that 1 	 is 

R=R0-i-R2  

satisfies the above requirements. We start by noting the following 

inclusions 

Fvars(P1A)c Fvars(A)uNew1  

Fvars(P P A )g Fvars(P A )UNew 21x 	 is 	2 

dom(P2 ) Fvars(P1A)uNew2  

dom(R2 ) Fvars(P2P1A) 

dom(R 1 )g Fvars(P1A). 

Now let cx be a type variable. If cx occurs free in P1A5  then 

RP 2 cx =R 
1 
 a. Similarly if aoccurs free in P 

1 
 A but not in P 

i s 
A then 

=a and thus 



82 

RP2cz = Ra = R0ci = R 1  a 

and thus we have proved RP2A=A'. 

Now, from 

vars(112 ) Fvars(P i s 	1 
A )uNeW uNeW 2 

it follows that 

P2P1A(112) 	> P2(P1AU Ix:  PiA  (Ii  i)})(ll2)  and thus, by the 

invariance of > under substitutions, 

RP2P1A(112) > RP2 (P1A5u{X:PA(fl1 )})(ll2 ). 

Also, since 

Fvars(P2(P1AxU{X:P1A(111)})(112)) Fvars(P2P1A5)UNeW1UNew2 

we have 

RP2 (P1A5U{X:PA(fl)})(ll 2 ) =R 2 2 1 5 	1 	2 P (P A U{X:P A(ji)})(Ji ) 

and RP2P4(ll2 ) > r follows from the transitivity of >.IJ 

The above result proves that SA is the least instance of A for 

which it is possible to derive a type for e. To complete the proof 

of our claims about W we will now formalize the notion of principal 

type scheme. 

We will say that r is a principal type scheme of e under A iff 

(i) 	A -e: T, holds; 

(ii) 	if A }- e:r' holds then r>r'. 

Corollary 1. If W(A,e) succeeds with (P,n) then PA(n) is a principal 

type scheme of e under PA. 
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proof: assume PA l-e:ri'. Then, by the previous theorem there is a 

substitution R such that RPA =PA and RPA(fl)>n'. Now, since the only 

type variables which occur free in PA(II) are those which occur free 

in PA and since R leaves those variables unchanged because RPA=PA, 

we have RPA(TI) =TA(11) and thus PA(n)>r' as required.tl 

Corollary 2. if it is possible to derive a type scheme for e from 

assumptions A then there is a principal type scheme of e under A. 

proof: we start by noting that if A' -e:ri' is a trivial variant of 

A - e:r then rt is a principal type scheme of e under A iff r' is a 

principal type scheme of e under A. Now, since it is possible to 

derive a type scheme for e from A, W(A,e) succeeds with some pair 

(P, 11) and there is a substitution R such that RPA =A. But then PA is 

a trivial variant of A, and since by the previous corollary, there 

is a principal type scheme of e under PA it follows that there is 

also a principal type scheme of e under A.EI 
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6. Comparison with the inference system of chapter I. 

We will close this chapter with a comparison of the inference 

system defined in this chapter with the one defined in chapter I. 

We start by noting that the main differences between the two 

inference systems reside in the way let-expressions are typed and in 

the use of type schemes in the inference system studied in this 

chapter. 

Concerning type schemes it is interesting to note that rule 

INST is in accordance with the point of view, taken in section 8 of 

chapter I, of regarding type schemes as describing sets of types. 

Similarly rule GEN corresponds to the initial remark made in that 

section, showing that if one could infer t for e from B and if a was 

a type variable which did not occur in B then, for any other type 

T', one could also infer [T'/a}T for e from B. 

Turning now our attention to rule LET we see that in chapter I, 

in order to infer a type for 

let x=e in e' 

one has to infer for e all the types which are needed to make e' 

well typed. Now, if the sets of assumption schemes involved contain 

at most one assumption about each identifier, then by the corollary 

to theorem 3 of chapter I, we know that all the types one can infer 

for e are generic instances of a same type scheme. This reasoning 

can been taken as a. justification for the form rule LET takes in 

the inference system studied in this chapter. 
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To make the above remarks more precise let 	denote the 

extension of the relation 	of chapter I to sets of assumption 

schemes as was done in section 8 of that chapter. We will extend 

to type schemes by writing 

+ 
A I—e: 

i ff 

A 

holds for every generic instance t of r. Then 

Proposition 2. Let A be any set of assumption schemes containing at 

most one assumption scheme about each identifier . Then for any 

expression e and type scheme r 

A -e:i4=A 

proof: (='V) we will use induction on the derivation of A I- e: Ti. We will 

only consider here the case where the last step of the derivation is 

an instance of rule LET since in all the other cases the desired 

conclusion follows directly from the definitions and from the 

induction hypothesis.  So we will assume that e is of the form 

let x=e1  in  e2 ,n is a type r and that, for some type scheme q I , the 

antecedents are A and ALi{a : n }I— e2 : i . Now by the induction 

hypothesis 	there 	are 	derivations 	of 	A ± e 1 :r 	and of 

AU{x:n'} e2  :T. But from the definition of it follows that there 

are a finite number of generic instances r 1 , .. . , t of i' such that 

A x u{x:T 1 
 ,...,:T 

n I I-re2  :t. But then, since there are derivations of 

A for i=l,...,n, we can also infer A I-(let  x=e1  in e2  ):r as 

we wanted. 



(=) we will use structural induction on e Again the only case 

which presents some degree of difficulty is the' one where e is of 

the form let x=e 1  in e. Now all we have to show is that if 

A }-(let x=e 1  in e 2 ):r holds then A - (let x=e 1  in e2 ):T also holds. 

But if A I.t (let x=e 1  in e2 ):t then there are types Ti' ..., r and 

derivations A I-e 1 :c. for i=l,...,n, such that 

Now, since A contains at most an assumption about each identifier, 

there is, by the corollary to theorem 3 of chapter I, a type scheme 

r such that A and such that each of the T is a generic 

instance of r. But then we have AU Ix: -ri) I—e 2 :T and thus, by the 

induction hypothesis, both A I-e 1 :ri and AU{x:} - e:- hold and so 

we can infer A .- (let x=e 1  in e 2 ):i as we wanted.1 

It follows from the above result that the set of types that can 

be inferred for an expression, from a set of assumption schemes 

involving at most one assumption about each identifier, is the same 

for both inference systems. On the other hand the type discipline of 

chapter I can cope with sets of assumption involving more then one 

assumption scheme about each identifier and thus, that type 

discipline can be regarded as a proper extension of the one studied 

in the present chapter. 

Turning now our attention to the type assignment algorithms 

defined for each inference system and in particular comparing the 

type assignment algorithm W with the one defined in theorem 3 of 

chapter I we see that the main difference is that the former accepts 
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as arguments a set of assumption schemes A and an expression e and 

returns, when it succeeds, a substitution S and a principal type 

scheme of e under SA, while the latter accepts as arguments a set of 

assumption schemes A and an expression e and returns, when it 

succeeds, a set of types which describe all the types which can be 

inferred for e from A. 

The above difference is however of no importance from a 

practical point of view since in practical applications there are no 

free type variables in the assumptions A. As a matter of fact W 

returns a substitution S only to enable its recursive definition. 

A subject that we will not discuss in this work and which is 

important from a practical point of view is a comparison, from a 

point of view of efficiency, of practical implementations of the two 

algorithms and in particular a study of the extra cost involved in 

handling multiple assumptions concerning a same identifier which 

forced the combinatorial nature of the algorithm defined in 

theorem 3 of chapter I. 
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CHAPTER III 

References to a store and type inference 

1. Introduction 

In this chapter we extend the methods and results of chapter II 

to the case where the language semantics is no longer purely 

applicative but includes references to an updatable store as first 

class objects. 

First of all we will use an example to show that the semantic 

soundness of the type inference system of the previous chapter does 

not hold for this extended semantics. Assuming we extend types to 

include terms of the form 

r ref 

to mean the type of a reference to a store location used to hold 

objects of type r, and that store access functions 

newref:Vci.cz - a ref 



I 
contents:Vcz.a ref - a 

update:Va.a ref + a - a ref 

are available, 	and that list functions are also available, 	we 

could infer, using the inference system of chapter II, 'the type 

mt list for the following expression 

let x = newref [] 

in let y = update x (cons true [1) 

in contents' (update x (cons 1 (contents x))) 

even though the result is the list [l;true] which is not of that 

type. 

The inadequacy of the inference system of chapter II to cope 

with references could be expected since it pays no attention to the 

side effects which may result, in the extended semantics, from the 

evaluation of an expression. 

In the example above the semantic failure of the type 

inference can be traced to the fact that it allows, in the 

declaration of x, the generalization of the type of the expression 

newref H 

to infer the type scheme 

Vci.a list ref 

for X. Our solution, which will prevent such generalizations, is 

based on considering not only the type of the result of an 

expression but also the types of any new references to the store 

which are created as a side effect of the evaluation of the 

expression. In particular the type inference relation will now have 

the extended form 
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where A is a finite set of types, to mean that not only the result 

of evaluating e is of type but also that the type of any of the 

references created as a side effect of the evaluation is one of the 

types in A. 

What was said above about the evaluation of expressions applies 

also to functions. In particular a function like newref should be 

described by the type scheme 

+ a ref*{a} 

to mean that when it is applied to an object of type a it returns an 

object of type a ref and that any new store location created by that 

evaluation, in this case just one, is of type a. In the case of the 

expression newref [], assuming A consists of the assumptions 

{neWref:Ya.a 	cx ref, []:Vcx.cz list) 

it will be possible to infer 

A 	newref []:a list ref * {cl} 

but then it will not be possible to generalize this to 

A 	newref []:(Va.a list ref)*{cx} 

since cx occurs in {a}.  Note also that, for the moment, values do not 

have sets A associated with their type but that those sets are used 

to describe side effects which result from the evaluation of 

expressions. That is why we will not be interested in terms like 

A 	newref []:Va.(cx list ref * {a)). 

The inclusion of terms of the form 

+ 

among types, which would be the natural thing to do according to the 
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discussion above, would preclude the extension of the type 

assignment algorithm of the previous chapter to this extended type 

inference system. That is so because the algorithm relies heavily on 

the properties of the unification algorithm and the latter can not 

be extended to unify terms involving sets of types while preserving 

those properties. For this reason our functional types will still 

have the form 

I 

but we will extend the type schemes of chapter II to include terms 

of the form 

TI + 

To overcome the absence of A in function types, the set t in a 

statement like 

A 	e :( t t+ T )ref*ti  

will play a dual role. On one hand it means, as above, that any of 

the new references created when the expression is evaluated is of 

one of the types in A. On the other hand it also means, roughly, 

that any reference created when the function, referenced by the 

result of the expression, is applied to an argument of type t' is of 

one of the types in A. 
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2. The language and its semantics 

a 

We start by extending the syntax of the simple programming 

language used in the previous chapters to include expressions of the 

form 

rec f x.e 

to enable the recursive definition of a function f with argument x. 

Note that this is necessary due to the presence of a store in the 

semantics which prevents the handling of recursive definitions 

through the introduction of an identifier bounded to the fixpoint 

operator as was done in the purely applicative case. 

* 
Given a set A we will use A to denote the set of all finite 

(possibly empty) sequences of elements of A. Given two such 

sequences s and s' we will use ss' to denote the concatenation of 

those sequences. We will also write s>s ' and say that s is an 

extension of s' iff there is another sequence s" such that s is 

s's". Finally  1st will denote the length of the sequence s. 

* 
In the case of a cpo V we will use V to denote the cpo formed 

by taking all the finite sequences of elements of V together with a 

least element J and ordering them by 
SC 8 	 def s=j or lsI=ls'l and VnJsI S 	8'. 

Starting from a given domain B of basic values we define the 

domain of values V, of functions F, of stores S, of locations L and 

of the error value W, by the following domain equations 

V = B + L + F + w 
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F = V + S * VxS 

S = V 
* 

L N1  

W= {.1 j  

where N stands for the set of non—negative integers and where VxS 

denotes the smashed product of V and S. 

The above choice of N as our set of locations and the decision 

to consider only finite stores were made to simplify the definition 

of a semantics for types. Nevertheless we could have taken our 

domain of locations to be any flat domain and L+V as our domain of 

stores. Note also that the above assumptions are general enough for 

any practical purposes. 

As before the domain of environments is defined by 

Env = Ide + V 

and we define a semantic function 

E:Exp + Env -o. S + VxS 

by the following recursive equations 

E[x]jps = <pftx}I,s> 

E[e1e2 ]ps = 

let 	 = Ee1 JJps in 

isW(v1 ) 

isF(v1 ) 	<wrong,s1 >, 

let <V 
29 

s 
 2 
> = Ef[e2 ]ps 1  in 

isW(v2 ) + <V,S>, VlIF.V2S2 

EE[xx.e]ps = <(xvs.Ee]1p[v1x]s) in V, S> 

Eftrec f x.e]Jps = <(Y(Au.Avs.EIfep[u/f,v/x ]s) in V, s> 
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EE let x = e 1  in e 2 ]lps = 

let <v 1 ,s 1 > r-_ Ef[e 1]ps in 

isW(V 1 ) 	<v 1 ,s 1 >, E1[e211p[V1/X] 6 1 

where Y is the fixed point operator and, as before, wrong stands for 

in V". 

The store access functions are defined as 

newref v s = s=j <j,j>,< Is 1+1 in V, sv> 

contents V S =-isL(v) + <wrong,S>, 

= I - <II> <s,s> 

update V s = 

isL(v) - <rong,s>, 

V = 	<j,j>, <u in V,s> 

where u ' s' = ls'I<v + <wrong,s'>, 

<V,S' •..S' 	V'S1 
-i-

...S' 	>. 
1 	v—i 	vi 	Is 'I 

3. Types, type schemes and their semantics. 

Given a set Pt of primitive types i and a set TV of type 

variables a, the syntax of types is described by 

-r ::= i 	a I r ref I TT'. 

We will use Ty to denote the set of all types and Mty 
to denote 

the set of monotypes, i.e., types without type variables in them. 

The syntax of type schemes r is described by 

::= -t I t I .1T * t I Va.r 
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where A ranges over finite sets of types. We will use 0 to range 

over non-quantified type schemes, i.e., a term which is either a 

type or is of the form T'+T*1. 

The 	concepts 	of generic variables, 	free occurrence, 

substitution of types for type variables, ..., are defined as before. 

Definition. We will say that a type scheme Ti' =V81.. m0' 
 is a 

generic instance of another type scheme rVci 1 ...a.0, and write 

ii>r', jff the B. do not occur free in Va 1"n'0 and there are types 

1 	n 
i such that either 

both 0 and 0' are types and e' =['r./cz.]0 

0 is Tl+T*t, 0' is u'+u*t,$, u'+uzr['r./cz.J(t'-t) and [t./ci.]t is 

a subset of t. 

It can be proved, although we will not need it, that the 

relation > between type schemes is the minimal reflexive and 

transitive relation such that 

Vcz.ri > 	 (for any type 'r) 

i>i' and ci does not occur free in Ti 

T'-T*A > t'-r*t' 	(for 	'2 ). 

Note that the above notion of generic instance is similar to 

the one used in previous chapters except for the extension required 

to cope with the extended function types. 

Proposition 1. For any substitution S and type schemes ii and Ti' 

11>11' => 	ST)>Srl'. 

Proof: the result can be proved using the same argument as in the 



proof of proposition 10 of chapter I.D 

Definition. Given two terms rA and 'A' we will write r1*A>fl*AI 

iff t is a subset of At and either 

n>n' 

r is Vcx1..a n 0T + T *A 	' is VB l 	O
m .0 and, assuming the a . do 

not occur free in n nor in A', there are types T 1 , ..., t such that 

ur[T./a.](T'+T) and [T./ci.]A" is a subset of A. 

Again, although we will not need it, it can be proved that 

n*A>q'*A l  is the minimal reflexive and transitive relation such that 

= 

AA' = fl*A>fl*AI 

(TI+r*A)*A > ('-.) 

if fl*A>fl*A and ci does not occur free in r nor in A' then 

fl*A>(Vci 	)*A 

The following proposition can be proved in the same way as 

proposition 1 above 

Proposition 2. For any substitution S 

= 

We will say that a type scheme 71 is closed iff no type variable 

occurs free in it. We will use Cts to denote the set of all closed 

type schemes. 
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We will now define a semantics for closed type schemes. In the 

purely applicative case we have used ideals of the domain of values 

to model types. However, in the presence of a store, it does not 

make much sense to say that, e.g., a location j belongs tothe type 

mt ref; to make this statement meaningful we must say it in the 

context of a store s such that s 1  is of type int, or, better, in the 

context of a class of stores such that their location 1 holds an 

integer. To describe such classes of stores we will use finite 

sequences of monotypes which we will call store typings. So let 

Sty = Mty be the set of all store typings. Thus for a particular 

store typing o the set of locations having type mt ref would 

consist of those locations 1 such that a  = mt. The reason for 

taking only monotypes for the definition of store typings is that, 

as implied in the introduction, each store location is used to store 

objects of only one type. Further, since store typings are not 

involved in deductions, there was no advantage in having type 

variables in them. Thus maps d:Sty+v offer a better model for types 

in the presence of a store. Note also that we surely want to 

preserve the types of values when the store typing is extended, so 

we impose the following constraint on the maps d 

do S do'. 

Finally there is the question of the types of new references 

which may be produced when evaluating functions. Note that this is 

relevant even for nonfunctional values like references to a 

function. Since we decided not to include the sets of types of new 

references to the store, in the types of functions, which may be 



created when the the function is evaluated, we will have to 

introduce then in our model for types. More precisely we will use 

maps d:FP(Mty) -Sty+17 as model for types where FP(Mty) stands for the 

set of 	all finite subsets of Mty. 	We will also impose the new 

constraint 

	

AA' =. 	docdt'a. 

Let D be the set of all such maps. 

Now let E:Pt 	be a given semantic function for primitive 

types. The following result shows we can extend E to closed type 

schemes. 

Theorem 2. There exists a semantic function 

T Cts-D 

such that 

TffiJjAa = Ei 1. . 4?7 

TJ{i refo = U. in VI leE and 	U {J) 
= 

	

(I) 	fin V 	feF VVCTflT']]A'a' 
3 (7 " E 	s.t. V'cT[T'(c'&') and 	E ZA  

where <v' , s'> = fvs } 

n T~ [T/alnlAa TEMtY 

TP1IT1t*hJJc, = 

TLVci.n]Jc 
= 

where Z:FP(Mty)-Sty+S is defined by 

Zo = { seS I 	IsI=IoI and  YlIsI s 1 	u {1}• 



Before we turn to the proof of the existence of T we wish, 

using both the semantic functions E and T, to attach meaning to 

assertions of the form 

A 

If the sentence is closed, i.e. if no type variable occurs free in 

it, then it is said to hold iff for every store typing c, for every 

environment p such that px]JcrL[n'Ac for each x:r' in A, and for 

any store S E: Z A a there is a store typing a'cA
* 
 such that 

v'cT']Jt(oc') and s'eZ(oa') where <v' , s' > =El[e]Jps. In the 

general case A 1= e:rl *A is said to hold iff each of its closed 

instances holds. 

The following result will be needed when proving the semantic 

soundness of type inference. 

Proposition 3. Let S be any substitution such that every type 

variable is mapped by S into a monotype. Then 

(1) i1>1' => TftSnJJAoT[Sr' JJc, for every set of monotypes A and for 

any store typing c; 

(ii) 	i'A' => TES 	(S)TI11Sr']J  (SA ')o  for any store typing cy. 

We now turn to the proof of Theorem 1. First of all we remark 

that in the previous chapters the equations defining a semantic for 

types provided what was tantamount to a definition of T by finite 

induction on types. Due to the presence of Z in the right hand side 

of the equation for functional types this is no longer the case 

here. Secondly, although one can endow D with a complete partial 
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order by ordering V by either the subset relation or its reverse and 

then taking the extension order in Mty+V and in FP(Mty)+Sty+V, the 

function from Cts+D onto itself defined by the equations above is 

not continuous so we will have to use methods other then those of 

fixed point theory to prove the existence of T. 

Before going on we shall start by proving that the right hand 

sides of the equations above are indeed ideals of V. This being 

trivial for most of the equations we will prove it for the one 

concerning functional types. Note that, since any intersection of 

ideals is also an ideal, it is enough to prove that the set 

{ fcF I VVE:TE T' JACF VScZAa 

ja'EA s.t. V'ET[T}(oo') and S'c(äa') 

where <V',s'> = fvs} 

is an ideal (provided T[[T]](J is an ideal for all t, L, and a). It is 

easy to see that the above set is downwards closed. Now to prove it 

is also closed under lubs of u-chains let (f.) be an w-chain of 

elements of the above set and let f be its lub. Now for every 

VcT[ t' ]a and StEAo there exists, 

such that v!cTfttJJA(ga!) and s!EA 

either s.=j for every i, in :  which 

for each i, a store typing a!e 

(ca!) where <V',S'> = f.vs. Now 
1 	 1 1 	1 

case since we are taking smashed 

products one has also v!=I for every  i, and then fvs=<I,I> and the 

condition above is trivially satisfied by taking a' to be the empty 

store typing or the s! are distinct from i for all but a finite 

number of i. But then, since they form an w-chain, they all have, 

except for a finite number, the same length, and, by the definition 

of Z, the same applies to the al. Now, since the a! belong to A and 
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A is finite and all but a finite number of the a! have the same 
1 

length, there must be a subsequence (a! ) such that the a! are all 
j 	 j 

the same store typing a'. Now if <v',s'>=fvs we still have v'=rUv! 

.1 

and s'=Us 	and since for every j, v! cTl[tJ]A(ao') and s! cZA(aa') we 
j 	 j 	 j 

have also v'cTi[tIJA(aa') and s'cZA(aa') as we wanted. At this point 

is interesting to point out the vital role played by the finiteness 

of A and by A itself in the above proof. 

The method we will use to prove the existence of T is 

essentially the one developed in [Mime 75, Mime & Strachey 76] for 

inclusive predicates(see also [Stoy 77]). However, instead of a 

direct proof, we prefer to present a general method based on the 

theory of 0-categories and of initial fixed points of u-continuous 

functors [Smyth & Plotkin 78]. This will give a general result 

concerning the existence of (a generalization of) inclusive 

predicates and is similar to what was done by [Reynolds. 74a] for 

direct complete relations. 

We start by recalling that the categorical approach to the 

existence of solutions of recursive domain equations like those in 

section 2, is based on associating a functor F with those equations 

and then proving the existence of an object C such that FCC. We use 

essentially the same method, by extending the category in question, 

to prove simultaneously the existence of a solution to the recursive 

domain equations and of a map T satisfying the equations of 

Theorem 1. 

We recall that an 0-category is one whose horn sets are 
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w-complete partial orders and such that composition is w-continuous 

in each argument. 

Our starting point is a generalization of the notion of comma 

category for 0-categories. 

Definition. Let C be an 0-category and D be an object of C. The 

category C+D consists of 

objects: arrows p:CD of C; 

arrows: diagrams <p :C-D,p' :C'+D,f:C -.-C'> of C such that p' ofcp. 

f 
C>C' 	

p'ofcp 

The composition in C4D is just the one induced from C. It is 

also easy to realize that if we take the order in the horn sets of 

C+D induced from that in the horn sets of C then C+D is also an 

0-category and that if C has an initial object then so does C+D. 

Lemma 1: If C is w0 -cornplete then C+D is also w° -cornplete. Morever 

a cone <u n 
:p-"p n > to an w-chain <p n ,fn > is universal iff 

<u> is a limiting cone to the w-chain <Cfn> in C, 

where C is the domain of p 
n 	 n 

p =Upou. 

proof: we have to prove that for every w-chain 	there is a 

limiting cone. 
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fo 	 fl  

C4 	 C< 
2 

PO 	 Pi 	 P2 

Now <C 
n ,ffl 

> 	
n 

is an w-chain in C so there is a limiting cone <u :CC 
n > 

c_.z 	c 	 C 1 .— tD 	 2.:z 

fo 	 fl  

Now for each n 

pofc. p+ 

so 

pofou 	p ou 
n n n-4-l--- n+l n+1 

or since u =f ou n n n+l 

poutp ou n n- n+l n+l 

But then, if we define p= LJpOU, the cone <U> lifts to a cone 

from p to the chain <p ,f> in C+D since one obviously has for each 

n 

pof p. 

Let us check that it is a limiting cone. Let <u'> be any other cone; 

then there is a unique arrow f such that the following diagram 

comutes 
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CI 

u 

U~ 
C 1 	 c2 — 

1 /U  2 
but then uof = u' for each n, and also, by hypothesis, 

pou1; c_ p' 

so 

Pn 0Un 0f S P' 

and 

ci pouof = (Upou) of = pofcp' 

so the arrow f lifts to an arrow in C+D with domain p and codomain 

p'. Now suppose <U'> is also a limiting cone. Then f is an 

isomorphism and 

= pof 

but then 

P, = pof = (Up ou ) of =Up ou' nfl n 	n n n 

as we wanted.E 

Let F be an endofunctor of C the category of embeddings of C. 

A lifting of F to (C+D)E  is an endofunctor P of (C4.D)E  such that 

FoU = Uo 

where U is the obvious forgetful functor from (C+D)E  to C. 
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Lemma 2. If P is a lifting of F then P is w-continuous iff F is 

w-continuous. 

proof: we will only prove that P is u-continuous when F is 

w-continuous. Let <U:p+p> be a colimiting cone to an w-cochain 

<p,f> in (C+D)E.  By Theorem 2 of [Smyth & Plotkin 78] it is 

sufficient to show that is a limiting cone to the w-chain 

in CO. Now if we let C denote the domain of p,  for 

each n, and C denote the domain of p  then, by lemma 1 above, it is 

enough to prove that <(FU)R> is a limiting cone to the w-chain 

<FC,(Ff)R> in C and that 

Pp = U PpO  (Fu  )R. 

The first part follows from the continuity of F. For the second part 

we have 

FpOFU 

Pp Pp. 

From the second innequality we can infer 

Li Fpo(Pu) R C Pp. 

From the first we also have 

Pp o u opuRc,  

But then, since 

UFuoFu' =idFC, 

we have 

Pp = Pp o id CITIJFPOFURiJ 

Now, to use the above results to prove the existence of our 

semantic function for types, let 
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- T be the cpo consisting of the two elements true and false 

ordered by true C_false; 

- StyT be the cpo of all maps from Sty to T which are monotonic 
44 

with respect to theVextens ion  order in Sty and the order in T. 

- FP(Mty)Sty+T be the cpo of all maps from FP(Mty) to StyT which 

are monotonic with respect to the'subset relation in FP(Mty); 

- Dbe the cpo of all maps from Cts to FP(Mty)-Sty+T; 

- CPO1  be the category of cpos together with strict ti-continuous 

maps; 

- F be the w-continuous endofunctor of cpoE associated with the 

recursive domain equation for the domain of values V. 

Note that there is an isomorphism between 	and 

Cts-FP(Mty)Sty-V. So all we have to do is to define an appropriate 

lifting of F to (CPO 1+D)E  and then the initial fixed point of this 

lifting will give us not only V again but also a "predicate" :V-D 

satisfying the equivalent to the equations in Theorem 1. Since the 

outlined above consists only of lenghty, but otherwhise trivial, 

definitions and checks of innequalities we will omit the details-Q 

h 	 .r) 
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4 Type inference 

We say that we can infer r*t for e from A and write 

A e:r1*t iff this can be derived from the following inference rules 

where, as before, A X 
denotes the result of excluding from A  any 

assumption about X: 

(X:r in A) 

(n*>i-i*) 

(a does notoccur free in A or in ) 
A 	e:(ya.r)*A 

AI_e:(T 1 -T)*,AI_e: .r* 
COMB: 

A 	ee:Tt*A 

Au{x:i'} 

A 

(Af ) Ulf: T'-'"rx:T') 	e:T*A 

A 	recfx.e:(t'-T*A)*Ø 

A 	e:n*t, AU{x:n} .- e':ii'-A 

A 	let xe in e' :n h * 

The following example, where 

A = {newref:ya.cz+cz ref*{a}} 

B = A U {x:cil 

TAUT: 	A X:T*Ø 

A 
INST: 

A e:nt*l 

A e:1-1* 

ABS: 

REC. 

LET: 

and 
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illustrates the main new features of type inference. 

B f-newref:(Va-'a ref'*{a})*Ø 	 B I_x:ci*Ø 

INST 	 INST 

B I-newref:(ci+cz ref)*{a} 	 BI_x:a*{a} 

COMB 

B - newref x:a ref* {cz ) 

- I ABS 

A - Ax.newref x:(c1a ref*{ci})*Ø 

GEN 

A I— Ax.newref x:(Vc.ct-'-ct ref*{cz })*Ø 

It is interesting to note the strong similarity between the 

above inference rules, apart the one for recursive function 

definitions, and those of chapter II. One of the consequences of 

that similarity is that most of the proofs of results in that 

chapter can be easily adapted to prove similar results for the new 

inference system. Note also that if A .- e:n in the inference system of 

chapter II then we also can derive A I_e:1)*ø in the new inference 

system. 

The following result corresponds, for the new inference system, 

to lemma 3 of chapter II and can be proved in a similar way. 

Lemma 3: If p>p' and AU{x:p' } k e:rit then also AU{x:P} _e:r*t. 

To prove the semantic soundness of type inference it is 

convenient to restrict ourselves to a certain class of derivations. 
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We will say that a derivation of A F- e:n is standard if  each LET 

step of the form 

AtF-e1 :n1*at,Au{x:ri1 } l_e2 : n2*At 

A' -1et x=e 1  in e2 :1 2*Al  

is such that if a type variable occurs free in n then it 

also occurs free in either A' or in A'. 

Lemma 4: If A }_e: ri*A admits a derivation then it also admits a 

standard derivation. 

proof: the proof consists of two parts. We first assume that the 

result holds when the last step of the derivation of A I_e: n*A is one 

of TAUT, COMB, ABS, REC or LET and note that it then holds in the 

general case. In the second part we will use structural induction on 

the expression e to prove the special case. For the first part it is 

enough to note that if we have a standard derivation of A Je: n*A and 

follow it with either an INST or GEN step then the new derivation is 

also standard. For the second part the only non trivial case in the 

induction is when e is of the form let .x=e1  in e2 . Then the last 

step of the derivation is a LET step. Let A I_e1 :ri *A and 

AU{x:'} e2 : ii*A be the antecedents and assume that a1, ..., a are 

all the type variables which occur free in ii'  but not in A nor in A. 

We can use a sequence of GEN steps to construct a derivation of 

A I_e 1 :(Vci 1 ...Vcz.nt)*A and use the induction hypothesis to show that 

it also admits a standard derivation. Now n'  is a generic instance 



110 

of Va1 .. .Va.' and we can use lemma 3 and the induction hypothesis 

to show that there is also a standard derivation of 

AU{x:Va1 ...Va.r'} I_e2 : ri*t. Finally we can apply rule LET to those 

two standard derivations to obtain a standard derivation of 

A 

To prove the semantic soundness of type inference we have to 

prove the following, slightly more strong, result. 

Proposition 4. If A -. e: r.* then: 

- for any substitution S which maps each type variable into a 

monotype, 

- for any store typing a, 

- for any environment p such that p[X]1cT[Sn1(SA)a  for every 

assumption x:' in A 

- for any store SE(S)a 

there is an o'c(SA) 	such that V'cTj[Si1]}(St,i)(ac') and S'cE(St)(acj') 

where <V',S'>=rEftepS. Further if a does not occur free in A or in 

then for any monotype ii one also has V'CT[S[u/cz]r)Jl(SA)(aa'). 

proof: by induction on a standard derivation of A - e:n*t. 

basis: if the derivation consists of just one step then it must be 

an instance of rule TAUT. In this case, if we take a' to be the 

empty store typing, the first part of the result holds by the 

hypothesis. The second part holds trivially since a does not occur 

free in . 

- induction: we have several different possibilities accordingly to 
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the rule of inference used in the last step of the derivation. 

case INST: in this case the antecedent is A I_e: n I*tt for some type 

scheme i' and set of types A' such that r''>rA. By the induction 

hypothesis there is a a'c(SA) 	such that V'cTI[Sri'1J(SA')(oo')  and 

S'cE(SA')(ao'). 	Now we have, by proposition 2 and 3, that 

is a subset of TI[Sr]j(SA)(cc')  and thus 

V'cT[Sr(SA) (cc ') as we wanted. Also if ci does not occur free in A 

or in A we have, noting that A' is a subset of A and by the 

induction hypothesis, v'cTSi']J(3A')(aa') for any monotype u. Now, 

by proposition 2, we also have 

[u/ci](T.*A) > 

But then by proposition 3 we have v'cTS[u/a]i(SA)(oo') as we 

wanted. 

case GEN: in this case r is of the form Vcz.ri' and the antecedent is 

A - e: *A where a does not occur free in A or in A. We have to prove 

the existence of a store typing a'E(SA) such that 

v'cT[S[ii/a]n'Jj(SA)(aa') and s't(SA)(oo') for every monotype U. 

Now, by the induction hypothesis, there is an a'(SA) such that 

V 1  cT Sri' ]) (SA)(a') and S' cE(SA)(oc,') and, further, such that 

V'cTS[u/B]r'](SA)(crn') for every type variable not occurring 

free in A or in A and for any monotype u. But then 

v'cT[S[u/a}n'](SA)(ca') for any monotype u as we wanted. Note that 

it is at this point that the second part of the proposition is 

required to enable the proof by induction. 

case COMB: in this case e is e 
1 

 e 
2 
 for some expressions e 1  and e2 , 

is a type t and the antecedents are A - e 1 :( T l, T )*A and A I_e2 :Tt*A 

for some type r'. Now, by the induction hypothesis, there is a store 
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typing a 1 c(SA) 	such that v 1 cTflS(T' -1 )]1(SA)(ao 1 ) and S 1 EZ(SA)(oo 1 ) 

where <v1,s1>=EE[e1Jps.  Now noticing that the hypothesis about P 

still holds, when we take oa' instead of a, there is again, by the 

induction hypothesis, a store typing °2 such that 

v 2 tTl[ST'1ll(SA)(a0 1 a2 ) and s 2 cE(SA)(000) where <t)2S2> =EE[e2]Ps1. 

Now if V1 =j or v 2  =j then Ee1e 2 ]JPs =<j,j> and the result holds if 

we take any a' •  Otherwhise note that both v 1  and v2  are distinct 

from wrong and furthermore isF(v1 ) =true and so 

EL[e1e2]Ps =VlFV2S2 Now, by the definition of T, there is a store 

typing a3c(SA)* such that v'cTItST(SA)((Ya 1 a2 a3) and 

s'E(SA) (CFO 1 a2a 3 ) where <V's'>=VlFV2S2.  Thus the result holds 

when we take a to be a 1 a 2 a 3•  The second part of the result follows 

along the same lines from the induction hypothesis. 

case ABS: here e  is Ax-e 1 , n is T'--t*A, A is 0 and the antecedent 

is A u Ix: T'} J-e 1 
:T*A. In this case 

s  

E1[ejJPs=<Avs.E1{e1 ]JP[v/xjs) in V, s> 

and we will prove that the result holds when we take a' to be the 

empty store typing. Obviously all we have to prove is that 

(Avs -EE ep[vIx]s) in 	E T[S(T+T*A')]1(SA)O. 

Now it is enough to prove that for every set All containning A', for 

every extension a1  of a, for every vcTF[ST'1(SA")(j 1  and store 

there is a store typing 02  such that v'ET[STIII(SA 1 ')(0 1 0 2 ) 

and s'EE(SA") (CF 1 a2 ) where <v',s'>=[e 1 P[v/xIs. Now 

P[v/x]FyFTIISfl(SA 1 ')a 1  for every assumption y: T1 in AU Ix: T'} and 

so, by the induction hypothesis, there is a a2 c(SA") which 

satisfies those requirements. Now assume that c does not occur free 

in A nor in A. To prove that 
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(Avs.E[e1p[vIx]s) in F c 

is enough to repeat the argument above but taking S[u/a] instead of 

S since S[uIa]t.=St. 

case REC: in this case e is rec f x.e 1 , ii is t' -'- t', t is 0 and the 

antecedent is (Af ) U{x:t',f:t'+i} Ie1 :t*. In this case we can prove 

that the result holds when we take a' to be the empty store typing 

by proving, by induction on n and in a similar way as for ABS, that 

each element of the u-chain (G 
n
(j)), where 

Gu = Avs.Ej[ e 1 :JJp[v/x,ulf}a, 

is in T1[S(Tt+t*t 1 ) 10a and remembering that the latter is closed 

under lubs of w-chains. 

case LET: 	here e is let x=e1  in e 2  and the antecedents are 

A l e1 :rl i*A and AU Ix: n'} I_e 2 :n*L for some type scheme Ti 	By the 

induction hypothesis there is a store typing o 1 €(SA) such that 

v1cTSri'](S)(aa1) and 	s1cZ(SA)(aci 1 ) where <v1,s1>=E[e1]ps. If 

v1  =j then Ee]ps=<I,j>  and the result holds when we take a to be, 

e.g., 	Otherwhise note that v 1  is distinct from wrong and thus 

Ere]ps =EE e2]p[v1/x]s1. Now p[v1 /x](y TflS]J(S)(oo 1 ) for every 

assumption y: Ti in AUix:r'} and thus, again by induction, there is 

a store typing a2c(S) such that v2cTllISn]I(SA)(0o1a2) and 

s2€E(S)(aa1 a2 ) where <v2,s2>=E1fe2p[v1/x]s1 as we wanted. The 

second part of the result follows also by induction because if a 

does not occur free in A nor in A it also does not occur free in n' 

since we assume that the derivation is standard.0 

The following is an immediate corollary of the previous result. 
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Theorem 2 (Semantic soundness of type inference). For any expression 

e, type scheme , assumptions A and finite set of types A if 

A - e: fl*A 

holds then 

A 1= e:i*A 

also holds. 

The following result shows that type inferability is preserved 

by substitutions and can be proved exactly in the same way as 

proposition 1 of chapter II. 

Proposition 5. If A I_e: r *A then for any substitution S  also 

SA Ie:S( n*A). Moreover if there is a derivation of A _e: T1 *1l of 

height n then there is also a derivation of SA _e:S(1*A) of height 

less or equal to n. 

To conclude this section we will examine a property of type 

inference which may be of use in practical applications. We first 

note that the information provided by the sets A is not very 

interesting from a programmer's point of view. We will show that, to 

a certain extent, we can forget about the types in the sets A 

provided we remember the variables which occur in those types. More 

precisely: 

We define an equivalence relation = between finite sets of 

types by writing A=A 1  iff the type variables occurring in A are 
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exactly those which occur in '. Note that the equivalence classes 

under = are in one to one correspondence with finite sets of type 

variables. We next extend = to type schemes by writing r=ri' iff n is 

i-i' or Tj 
is Va 1 * * * a n T'-T *A and Ti'  is Va 1 * 

 — a T'--r*Al with A=A'. 

Similarly we extend = to sets of assumptions by writing A=A' iff for 

every assumption x:n in A there is an assumption x:' in A' with 

rii', and reciprocally, for every assumption x:ri' in A' there is an 

assumption x:TI in A such that TI'r). The following result states that 

we can take the quotient of the inference relation by 

Proposition 6. If A I_ e: ,n*A and AA' then there are a type scheme r)'fl 

and a set of types A I =A such that A' -Ie: TV*  t, I  also holds. 

proof: the proof can be obtained by straightforward induction on the 

derivation of A _e:ri*L.EI 

5. A type assignment algorithm 

We will now define a type assignment algorithm similar to the 

one of chapter II. 

To define the algorithm it is convenient to introduce some new 

notation. 

Given a type scheme TI, a set of assumptions A and a set of 

types A we will use AA(n) to denote the closure of n under the set 

of type variables occurring free in A or in A. 
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Given a nonquantified type scheme 0 we will use Disc(0) to 

denote the pair (t,) obtained from 0 as follows 

110 is a type then t=0 and =Ø; 

if 0 is of the form u'--u'A' then t=u'-u and Li=t'; 

The type assignment algorithm takes as arguments an expression 

e and a set of assumptions A and returns, when it succeeds, a 

substitution S, a non-quantified type scheme 0 and a finite set of 

types ti such that SA Ie:O*t. 

Definition. R(A,e) =(S,o,t) where 

If e is x and there is an assumption x:Vc 1 .. .a.0' in A then 

s=Id, 0 =[B./a.le ,  and t=Ø where the B. are new type variables. 

If e is e 1  e  2 
then 

let (S1 ,0 1 ,A1 ) = R(A,e1 ) 

and (s2 ,e 2 ,A2 ) = R(S1A,e) 

and 	= Disc(S2 0 1 ) 

and 	2 ,A4 ) = Disc(0 2 ) 

and U = U(T 1 ,T2--0) where B is new; 

then S = U52S1 , 0 = UB and A = U(s2 A1U 2uA3uA4 ). 

If e is Xx.e' then let B be a new type variable 

and (S',O',A')=R(A U{x:B},e') 
X 

and (t,t") = Disc(0') 

then S = 5 1 , 0 = (SB)+t*(UAI) and A = 0. 
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If e  is rec f x.e' then let a and B be new type variables 

and (S',O',t-l') =R(( 44)fU{f:B-*-ax:8} P e') 

and (T,A") =Disc(O') 

and u = 

then s = us's e = 	 and A = 0. 

If e  is let xe1  in e2  

let (s1 ,e 1 , 1 ) = R(A,e 1 ) 

and (s2 )o 2 , 2 ) = R(S1 4U Ix: A 151A(O 1 )},e2 ) 

then S = S2S1,6 = 2 and t = (s21 )u 2 . 

note: when one of the conditions above is not met H fails. 

The two following results can be proved in the same way as the 

similar results of chapter II. 

Proposition 7 (Soundness of R). If R(A,e)  succeeds with (5,e,A) then 

there is a derivation of 5A Ie:O*L. 

Proposition 8 (Completeness of R). Given A  and  e  let  A'  be an 

instance of A r be a type scheme and i' be a finite set of types 

such that 

A' I- en*t. 

Then 

R(4,e)  succeeds. 

If R(A,e) =(s,o,L) then, for some substitution *R, 
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A' = RSA and R(ASA(0)*t) > T11. 

Finally we note that R can be adapted to compute type module 

by treating the sets A as sets of type variables and taking St to 

denote the set of type variables which occur in Scz.for some a in I. 

6. Weak polymorphism and programming examples. 

The typechecker of the ML system was modified by the author to 

handle references. Similar extensions were also included in the ML 

implementation for the VAX by L.Cardelli. However those 

implementations use a notation for functional type schemes which is 

different from the one used in this chapter. That notation, which is 

very similar to the one used in an early proposal to extend ML to 

handle references [Gordon 79], is based on the introduction of a 

second class of type variables called weak variables. To explain 

this designation consider two functions like 

newref:va.a 	a ref * {a} 

f:Va.ct - a. 

Now if we apply each of those functions to the null list we can 

infer the type scheme Va.a list for f[] but, although we can infer 

a list ref for newref[] for every type variable a, we can not 

generalize this to Va.a list ref. In this sense the a in the type 

scheme for newref is weaker then the a in the type scheme for f. In 

a similar sense we can say that the polymorphism of newref is weaker 
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then that off because if we apply  to a polymorphic object like [] 

we obtain a polymorphic result while for newref this is not true. 

Returning to the notation used by the implementations referred 

above, and remembering what was mentioned about the possibility of 

replacing the sets of types ,, with sets of type variables, what is 

done is to represent a functional type scheme like as 

Y.ct-'a where we have underlined a to mean it is weak. Finally we 

note that even though this does not define a one to one 

correspondence because in a type scheme like T+T*1 there might be a 

variable in A which does not occur in-r '-+T. the fact remains that the 

type assignment algorithm only attempts to generalize on the 

variables which occur in T'T and so we can discard those cases. 

We will now present some examples of the extensions to the ML 

type discipline to handle references which are supported by the 

results of this chapter. In this examples update and contents are 

replaced with infix := and prefix @ and, contrary to both the 

implementations, we have explicitly quantified generic type 

variables. 

% The following declaration results in a non-polymorphic 

type assignment 	 % 

# let x=newref [];; 

list ref 

% The following assignment causes a to be instantiated to mt % 

X := 

- : mt list ref 
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% as can be checked with % 

# x;; 

- : mt list ref 

% One of the consequences of weak polymorphism is that 

some expressions are assigned a non-polymorphic type 

even when this would be semantically valid % 

# map newref;; 

- : al list + al ref list 

% compare however with 0- 
/0 

# Al.map newref 1;; 

- : Va.ci list -.- 	 ref list 

% The reason for the difference between the types assigned 

to the two expressions above is due to the fact that the 

A-abstraction on the second expression ensures that no 

reference results from its evaluation, while in 

the first expression the information conveyed by the type 

of map is not enough to guarantee that it does not apply 

newref to some argument 	 % 

% the following function swaps the contents of two references % 

# let swap r r' = let t=@r in r := @r'; r' := t;; 

swap = - : Vcz.a ref ~ a ref -, a ref 

% the following is a definition of arrays as an abstract 

data type 	 % 

# abstype a array = (a ref list) # mt 1/ mt 

# with 

# 	newarray(l,lb,ub) = 

# 	 if length 1 = (ub-lb)+l 

# 	 then absarray(map newref l,lb,ub) 

# 	 else failwith newarray 
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# and 

select a n = 

let 1, lb, ub = reparray a 

in if n>ub or n<lb 

# 	 then failwith select 

# 	 else el(n+1-lb) 1 

# 	 whererec el n 1 = n=1 => hd 1 I el (n-i) (ti 1) 

# and 

iwb = 1st o snd o reparray 

# and 

upb = snd o snd o reparray 

# and 

# 	arraytolist = (map $@) o fst o reparray;; 

newarray = - 	Va. ((cx iist)#int*int) ± a array 

select = - : Vcz.cx array + mt + a ref 

iwb = - : V.a array - mt 

upb = - : Vcx.cx array + mt 

arraytolist = - : Va.a array + a list 

% using this definition for arrays one can define a function 

to sort arrays as follows 	 % 

# let sort a pred 

# let changes = newref true 

/ 	and limit = newref upb(a) 

# in if @changes 

# 	loop ( let i = newref (lwb a) 

in changes := false; 

if @i<@limit 

# 	 loop 

# 	 ( if not(pred @(select a @1) @(select a (@i+l))) 

# 	 then ( swap (select a @i) (select a 

# 	 changes := true 

# 
i := @i + 1 
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r 
# 	 limit := @limit-l; 

# 	 );; 

sort = - :Va.(a array) - (a - a - bool) + 

% we can now create an array and sort it 	 % 

# let a=newarray([3 746 ],l, 4 ) 

a= - int array 

# sort a 

C) 

# arraytolist a;; 

[3;4;6;7] : mt list 

% we will now define an abstract data type modelling 
0/ 

	

updatable binary trees 
	

/0 

// absrectype a ubtree = 	+ cl#(cI ubtree ref)#(ci ubtree ref) 

# with einptytree = absubtree o ml 

# and nuiltree = isi o repubtree 

# and mktree(tag,lsofl,rSOfl) = 

absubtree o mr (tag,newref lson,newref rson) 

# and tag t = isi o repubtree t => failwith tag 

# 	 I fst 0 outr o repubtree t 

# and ison t = isi o repubtree t => failwith lson 

# 	
fst o snd o outr o repubtree 

# and rson t = isi o repubtree t => failwith 'rson 

# 	 I snd o snd o outr o repubtree;; 

emptytree = - : Va.a ubtree 

nuiltree = - : Vcz.cz ubtree 	bool 

mktree = - : Va.a#(cl ubtree)*(a ubtree) 	a ubtree 

tag = - : Va.a ubtree 	a 

ison = - : Va.a ubtree 	(a ubtree ref) 

rson = - : Va.ct ubtree + (cx ubtree ref) 
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% using the above definition for updatable binary trees we 

will now define, as an abstract data type, a dictionary 

organized as a binary tree % 

# abstype (a,B)dic = (cz*(B ref))ubtree ref It (cx -.. cx + bool) 

# with mkdic pred = absdic (newref emptytree, pred) 

# and accessdic fn dic id = 

let root,pred = repdic dic in 

# 	letrec scan t = 

# 	 if nuiltree @t 

# 	 then ( let ir = fn() in 

# 	 t:=mktree((id,ir), emptytree, emptytree); 

# 	 ir 

# 	 if fst o tag (@t) = id then snd o tag (@t) 

# 	 if pred (fst o tag (@t)) id 

# 	 then scan ( rson @t) 

# 	 else scan ( ison @t);; 

mkdic = - : VcxVB.(cz + 	+ bool) + (cz,B) die 

accessdic = - : VaYB (. - B ref) + (cz,B) dic - cx 	B ref 

% we can now define functions to search and insert new ids in 

the dictionary 	 % 

# let search = accessdic (A().failwith search) 

# and insert die id info = 

# 	(accessdic (AO.newref info) die id) := info;; 

search = - : VaYB (a,B) die 	a 	B ref 

insert = - : VaYB (cx,B) die 	B + B ref 
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CHAPTER IV 

Conclusions and directions for further study 

The main objective of this dissertation as set out in the 

intoduction was to complete and extend the work of R.Milner on 

polymorphic type assignment in Drogramming. Here we examine the 

extent to which that objective was attained and also call the 

readers attention to some aspects which we think deserve a deeper 

study. 

The type inference system studied in chapter 1 can be seen as 

an extension of the system of R.Milner to handle overloading. Apart 

from that it is interesting in itself because it provides a 

conceptually much more simple framework in which the theory of type 

assignment can be studied. One of the interesting points made in 

that chapter is not only that typechecking can be supported by type 

assignment theory but also that derivation trees and hence type 

assignment itself can be used to formulate and justify the program 

transformations which need to be done by compilers to support 
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overloading. We believe this use of derivation trees can be also 

made in relation with other possible extensions to the language such 

as those involving run-time type manipulation. We should also point 

out that we have only presented a partial solution to the problem of 

handling user defined overloading and we think the way to overcome 

the limitation imposed is to design an algorithm that, like the one 

of chapter II, will go directly from a set of assumption schemes to 

the set of type schemes that can be inferred for the expression. 

The reformulation of Miler's system presented in Chapter II 

provides a better insight on its features and in particular allowed 

us to give an affirmative answer to the questions left open in his 

work concerning the existence of principal types and the 

completeness of the type assignment algorithm. 

Chapter III shows that type assignment and type polymorphism 

need not be confined to purely applicative languages. From a 

practical point of view it also provides a type discipline which is 

sufficiently powerful to handle a large class of programs involving 

references as can be judged by the examples provided there. 

Nevertheless we should point out that many of the features of 

that system were forced on us by technical considerations such as 

the existence of a semantics for types and of a type assignment 

algorithm. This may explain why we were unable to do for this system 

what chapter I does for Milner's system. One of the consequences of 

this fact is that the question of how to handle references in the 

presence of overloading is still left open, at least from a 

theoretical point of view. 
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On the other hand we also should point that the technical 

problems associated with the definition of a semantics for types 

have nothing to do with polymorphism and would arise even if only 

monotypes were involved, so the methods and models presented there 

are also relevant to the study of the properties of typechecking for 

non purely applicative programming languages using the techniques of 

denotational semantics. 

Finy the notion of weak polymorphism and the syntactical 

mechanisms used to enforce it, combined with program transformations 

based on derivation trees, seem to be promising in handling other 

extensions to the language such as those involving run-time type 

manipulation where those mechanisms could be used to decide what 

types needed to be dynamically passed to routines. 
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APPENDIX I 

The purpose of this appendix is to present in more detail 

the procedure outlined in the last paragraph of section 3 of 

chapter III for defining a lifting V of the endofunctor F associated 

with the domain equation for V. 

We start by making the isomorphism between VD and 

CtsFP(Mty)'StyV explicit. 

Lemma 1. For any cpo V the map which sends each p:Vt to 

:Cts4?P(Mty).Sty.cV defined by 

PffrIVAU= (v1 JpvnAuStrue } 

is an isomorphism with inverse given by 

qvn&= vqn)jia true, false 

for any q in Cts.FP(Mty)-Sty. 

proof: to see that Vis well defined we note that since p is strict 

and continuous the set vsv I pv riAuctrue } is a nonempty ideal of V. 

Further for any vsV, 	, t'2i and O<cY' we have by the assumptions 

on p, pvriA'o' c pvflLaand so if v .ØnJAa we must also have v[fl 

which shows that also satisfies the required monotonic'ty requirements 

on sand a The remainder of the proof follows along similar lines whic} 

we will omit here L1 

Using the above isomorphism we can now define how '  acts on objects 

of (CPO +). 

/ScZ 



—E 	 - 	 -I AA 

For any object p:V+D of (CPO 1 D) 	we take F(p) to be q:F(V)-D 

where q:Cts--FP(Mty)*Sty--F(v) is defined by 

q flo = ( b in F(V) I b [IJ J 
q Tref0 = { 1 in F(V) J 1CL and 01= T } U (.L} 

qT'- -ra = 

r) n
{ f in F(V) I f:VV±vxv s.t. GP a 

VVEpT' 	y scE'o' 	o"c 	s.t. 

v'crTA'(cy'a") and s'c'(o'cJ") 

where <v,s 1 > = fvs } 

qrIT*Lcy = qT' 	(M'E')o 

q 	a = 
	T 	q [/a]na 

where 

* 
E 
p 
 La = {sEv I JsJ=JCYJ 	and vi<IsI  s1 c 	 U 

One can easily prove that the above definition is sound by using 

exactly the same arguments as in pages 100-101. 

Finally it only remains to define on arrows of (CPO ç)E. In 

fact given an arrow <p 1 :V 1-, p2 :V2 -*.L f:V 1±V2> we take its image by 

to be <F(p 1 ) :F(V 1 )±', F(p2 ) :F(V2 )±5', F(f) :F(V 1 )F(V2 )>. 

Now in order that the above definition is sound it is enough that 

R - F(p)F(f)c.F(p 1 ) and that F(p 1 )F(f )E F(p). Since the two inequalit 

can be proved in exactly the same way we will only show how to prove the 

first one. 
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Now to prove F(p 2 )eF(f)cF(p 1 ) it is enough to show that for 

all n,A, a and ucF(V 1 ) we have 

U E 	 Aa 	' 	F(f) (u) C 	(p 2 ) rn ia 

which can be done by structural induction on n. Since the only case whic 

presents some degree of difficulty is the one where ri is a function ty 

r'-r this is the only one we will examine here. 

Now if u c 	t ' - r 	then either u= -L in which case the resul 

follows immediately or u is a map in V 1-V --V 1 xV in which case u 2 =F(f) 

is the map in V±V2  ±VxV 	defined by 

	

* 	R 	R 
u 
2  v  2  s 
	(fxf )u (f v) (f s2) 	

* 	* 
where f denotes the natural extension of f to V 1  - -V 

Now for any '2Lx and cJ'>cY assume 

vcr'L'a' and sc E 	L'a'. 

	

Now since p
1 
 of C, p

2 
 by hypothesis we have fv 2 E 	ti'a' and 

similarly fR s C E L'a', but then, if we let <v',s'> = u(fRv ) 
(fR

P i 	 2 	2 

there is a 	such that v'c 	 o 

	

ri(a'") and s'c 	A'o'c") . Now, 
1 	 p1 

since p2ofp 1 , we have fv ' c1T ' ( a'a") and similarly fs'c 	'(a'o") 
p2  

which proves F(f)(u) is in 	 as we wanted. 
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