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SCHIZOPHRENIA IN CONTEMPORARY MATHEMATICS

by
Errett Bishop

During the past ten years I have given a number of lectures on the subject
of constructive mathematics. My general impression is that I have failed to
communicate a real feeling for the philosophical issues involved. Since I am
here today, I still have hopes of being able to do so. Part of the difficulty
is the fear of seeming to be too negativistic and generating too much hostility.
Constructivism is a reaction to certain alleged abuses of classical mathematics.
Unpalatable as it may be to have those abuses examined, there is no other way to
understand the motivations of the constructivists.

Brouwer's criticisms of classical mathematics were concerned with what I
shall refer to as “the debasement of meaning". His incisive criticisms were
one of his two main contributions to constructivism. (His other was to establish
a new terminology, involving a re-interpretation of the usual connectives and
quantifiers, which permits the expression of certain important distinctions of
meaning which the classical terminology does not.)

The debasement of meaning is just one of the trouble spots in contemporary
mathematics. Taken all together, these trouble spots indicate that something is
lacking, that there is a philosophical deficit of major proportions. What it is
that is lacking is perhaps not clear, but the lack in all of its aspects con-

stitutes a syndrome I shall tentatively describe as "schizophrenia".



One could probably make a long Tist of schizophrenic attributes of con-
temporary mathematics, but I think the foilowing short list covers most of the
ground: rejection of common sense in favor of formalism; debasement of meaning
by wilful refusal to accomodate certain aspects of reality; inappropriateness
of means to ends; the esoteric quality of the communication; and fragmentation.

Common sense is a quality that is constantly under attack. It tends to be
supplanted by methodology, shading into dogma. The codification of insight is
commendable only to the extent that the resulting methodology is not elevated
to dogma and thereby allowed to impede the formation of new insight. Contemporar:
mathematics has witnessed the triumph of formalist dogma, which had its inception
in the important insight that most arguments of modern mathematics can be broken
down and presented as successive applications of a few basic schemes. The ex-
perts now routinely equate the panorama of mathematics with the productions of
this or that formal system. Proofs are thought of as manipulations of strings
of symbols. Mathematical philosophy consists of the creation, comparison, and
investigation of formal systems. Consistency is the goal. In consequence
meaning is debased, and even ceases to exist at a primary level.

The debasement of meaning has yet another source, the wilful refusal of the
contemporary mathematician to examine the content of certain of his terms, such
as the phrase "there exists". He refuses to distinguish among the different
meanings that might be ascribed to this phrase. Moreover he is vague about what
meaning it has for him. When pressed he is apt to take refuge in formalistics,
declaring that the meaning of the phrase and the statements of which it forms a
part can only be understood in the context of the entire set of assumptions and
techniques at his command. Thus he inverts the natural order, which would be

to develop meaning first, and then to base his assumptions'and techniques on the




rock of meaning. Concern about this debasement of meaning is a principal force
behind constructivism.

Since meaning is debased and common sense is rejected, it is not surprising
to find that the means aré inappropriate to the ends. Applied mathematics makes
much of the concept of a model, as a tool for dealing with reality by mathematical
means. When the model is not an adequate representation of reality, as happens
only too often, the means are inappropriate. One gets the impression that some
of the model-builders are no longer interested in reality. Their models have
become autonomous. This has clearly happened in mathematical philosophy: the
models (formal systems) are accepted as the preferred tools for investigating the
nature of mathematics, and even as the font of meaning.

Ever}one who has taught undergraduate mathematics must have been impressed
by the esoteric quality of the communication. It is not natural for "A implies
B" to mean "not A or B", and students will tell you so if you give them the chance.
0f course, this is not a fatal objection. The question is, whether the standard
definition of implication is useful, not whether it is natural. The constructivist,
following Brouwer, contends that a more natural definition of implication would be

more useful. This point will be developed later. One of the hardest concepts to

., communicate to the undergraduate is the concept of a proof. With good reason--the

concept is esoteric. Most mathematicians, when pressed to say what they mean by
a proof, will have recourse to formal criteria. The constructive notion of proof

by contrast is very simple, as we shall see in due course. Equally esoteric, and

. perhaps more troublesome, is the concept of existence. Some of the problems
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. associated with this concept have already been mentioned, and we shall return to

the subject again. Finally, I wish to point out the esoteric nature of the




classical concept of truth. As we shall see later, truth is not a source of
trouble to the constructivist, because of his emphasis on meaning.

The fragmentation of mathematics is due in part to the vastness of the subject
but it is aggravated by our educational system. A graduate student in pure mathe-
matics may or may not be required to broaden himself by passing examinations in
various branches of pure mathematics, but he will almost certainly not be required
or even encouraged to acquaint himself with the philosophy of mathematics, its
history, or its applications. We have geared ourselves to producing research
mathematicians who will begin to write papers as socon as possible. This anti-
social and anit-intellectual process defeats even its own narrow ends. The
situation is not likely to change until we modify our conception of what mathe-
matics is. Before important changes will come about in our methods of education
and our professional values, we shall have to discover the significance of theorem
and proof. If we continue to focus attention on the process of producing theorems,
and continue to devalue their content, fragmentation is inevitable.

By devaluation of content I mean the following. To some pure mathematicians
the only reason for attaching any interpretation whatever to theorem and proof is
that the process of progucing theorems and proofs is thereby facilitated. For ther
content is a means rather than the end. Others feel that it is important to have
some content, but don't especially care to find out what it is. Still others, for
whom G8del (see for example [16]) seems to be a leading spokesman, do their best
to develop content within the accepted framework of platonic idealism. One
suspects that the majority of pure mathematicians, who belong to the union of the
first two groups, ignore as much content as they possibly can. if this suspicion
seems unjust, pause to consider the modern theory of probability. The probability

of an event is commonly taken to-be a real number between 0 and 1. One might



naively expect that the probabilists would concern themselves with the computation
of such-real numbers. If so, a quick look at any one of a number of modern texts,
for instance the excellent book of Doob [14], should suffice to disabuse him of
that expectation. Fragmentation ensues, because much if not most of the theory
is useless to someone who is concerned with actually finding probabilities. He
will either develop his own semi-independent theories, or else work with ad hoc
techniques and rules of thumb. I do not claim that reinvolvement of the prob-
abilists with the basic questions of meaning would of itself reverse the process
of fragmentation of their discipline, only that it is a necessary first step.
In recent years a small number of constructivists (see [3 1, [9], [10], 111,
0123, [23], and [24]) have been trying to help the probabilists take that step.
Whether tﬁeir efforts will ultimately be appreciated remains to be seen.

When I attempt to express in positive terms that quality in which contemporary
mathematics is deficient, the absence of which I have characterized as
- "schizophrenia", I keep coming back to the term "integrity". WNot the integrity
[ of an isolated formalism that prides itself on the maintainance of its own
é standards of excellence, but an integrity that seeks common ground in the re-

searches of pure mathematics, applied mathematics, and such mathematically

e

oriented disciplines as physics; that seeks to extract the maximum meaning from
geach new development; that is guided primarily by considerations of content
rather than elegance and formal attractiveness; that sees to it that the mathe-
i matical representation of reality does not degenerate into a game; that seeks

j to understand the place of mathematics in contemporary society. This integrity
imay not be possible of realization, but that is not important. I like to think
:of constructivism as. one attempt to realize at least certain aspects of this
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idealized integrity. This presumption at least has the possible merit of pre-
venting constructivism from becoming another game, as some constructivisms have
tended to do in the past.

In discussing the principles of constructivism, I shall try to separate those
aspects of constructivism that are basic to the philosophy from those that are
merely convenient (or inconvenient, as the case may be). Four principles stand
out as basic:
~ (A} Mathematics is common sense.

(B) Do not ask whether a statement is true until you know what it means.
(C) A proof is any completely convincing argument.

(D) Meaningful distinctions deserve to be maintained.

Surpfising]y many brilliant people refuse to apply common sense to mathematics

A frequent attitude is that the formalization of mathematics has been of great
value, because the formalism constitutes a court of last resort to settle any
disputes that might arise concerning the correctness of a proof. Common sense
tells us, on the contrary, that if a proof is so involved that we are unable to
determine its correctness by informal methods, then we shall not be able to test

it by formal means either. Moreover the formalism can not be used to settle

philosophical disputes, because the formalism merely reflects the basic philosophy?

and consequently philosophical disagreements are bound to result in disagreements
about the validity of the formalism.

Principle (B) resolves the problem of constructive truth. For that matter,
it would resolve the problem of classical truth if the classical mathematicians
would accept it. We might say that truth is a matter of convention.” This simply

means that all arguments concerning the truth or falsity of any given statement
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about which both parties possess the same relevant facts occur because they have
not reached a clear agreement as to what the statement means. For instance in
response to the ingquiry "Is it true the constructivists believe that not every
bounded monotone sequence of real numbers converges?", if I am tired I answer
"ves", Otherwise I tell the questioner that my answer will depend on what mean- -
ing he wishes to assign to the statement (*}, that every bounded monotone sequence
or real numbers converges. Moreover I tell him that once he has assigned a precise
meaning to statement (*), then my answer to his question will probably be clear to
him before I give it. The two meanings commonly assigned to (*) are the classical
and the constructive. It seems to me that the classical mathematician is not as
precise as he might be about the meaning he assigns to such a statement. I shall
show you later one simple and attractive approach to the problem of meaning in

classical mathematics. However in the case hefore us the intuition at least is

clear. We represent the terms of the sequence by vertical marks marching to the

j right, but remaining to the left of the bound B.
]
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f The classical intuition is that the sequence gets cramped, because there are

:1nfinite1y many terms, but only a finite amount of space available to the left
jof B. Thus it has to pile up somewhere. That somewhere is its limit L.

:

I
?he constructivist grants that some sequences behave in precisely this way. I

?a]] those sequences stupid. Let me tell you what a smart sequence will do. It




will pretend to be stupid, piling up at a Timit (in reality a false Timit) Lf.
Then when you have been conyinced that it really is piling up at Lf, it will

take a jump and land somewhere to the right!

.o | [ Joee |
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Let us postpone a serious discussion of this example unti] we haye discussed the
constructive real number system. The point I wish to make now is that under neith
interpretation will there be any disagreement as to the truth of (*), once that
interpretation has been fixed and made precise.

Whenever a student asks me whether a proof he has given is correct, before |

!
answering his question I try to discover his concept of what constitutes a proof.

Then I tell him my own concept, (C) above, and ask him whether he finds his
argument completely convincing, and whether he thinks he has expressed himself
clearly enough so that other informed and intellegent people will also be com-
pletely convinced.

Clearly it is impossible to accept (C) without accepting (B), because it
doesn't make sense to be convinced that something is true unless you know what
it means.

The question often arises, whether a constructivist would accept a non-
constructive proof of a numerical result involving no existential quantifiers,
such as Goldbach's conjecture or Fermat's last theorem. My answer is supplied
by (C): I would want to examine the prdof to see whether I found it completely

convincing. Perhaps one should keep an open mind, but I find it hard to believe




that I would find any proof that relied on the principle of the excluded middle

CEan oo

for instance completely convincing. Fortunately the problem is hypothetical,

T

because such proofs do not seem to arise. It does raise the interesting point

y that a classically acceptable proof of Goldbach's conjecture might not be con-

s structively acceptable, and therefore the classical and the constructive

‘ interpretations of Goldbach's conjecture must differ in some fundamental respect.

We shail see later that this is indeed the case.

Classical mathematics fails to observe meaningful distinctions having to do

with integers. This basic failure reflects itself at all levels of the classical

development of mathematics. Consider the number Ny defined to be 0 if the
» Riemann hypothesis is true and 1 if it is false. The constructivist does not
wish to prevent the classicist from working with such numbers {although he may
' personally believe that their interest is limited). He does want the calssicist
'

to distinguish such numbers from numbers which can be "computed", such as the
L

10
1 number n of primes less than 10]0 . Classical mathematicians do concern

3%themse1ves sporadically with whether numbers can be "computed", but only on an
ad hoc basis. The distinction is not observed in the systematic development of
classical mathematics, nor would the tools available to the classicist permit
ghim to observe the distinction systematically even if he were so inclined.

The constructivists are frequently accused of displaying the same insensitivity
to shades of meaning of which they accuse the classicist, because they do not
.distinguish between numbers that can be computed in principle, such as the
number ny defined above, and numbers that can be computed in fact. Thus they
‘violate their own principle (D). This is a serious accusation, and one that is

not easy to refute. Rather than attempting to refute it, I shall give you my
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personal point of view, First, it may be demanding too much of the constructivist
to ask them to lead the way in the development of usable and systematic methods
for distinguishing computability in principle from computability in fact. If and
when such methods are found, the constructivists will gratefully incorporate them
into their mathematics. Second, it is by no means clear that such methods are
going to be found. There is no fast distinction between computability in prin-
ciple and in fact, because of the constant progress of the state of the art among
other reasons. The most we can hope for is some good systematic measure of the
efficiency of a computation. Until such is found, the problem will continue to
be treated on an ad hoc basis.

I was careful not to call the number g defined above an integer. Whether
we do call it an integer is of no real importance, as long as we distinguish it
in some way from numbers such as ny. For instance we might call ng an integer
and call n, a constructive integer. The constructivists have not accepted this 1
terminology, in part because of Brouwer's influence, but also because it does not
accord with their estimate of the relative importance of the two concepts. I shalﬁ
reserve the term "integer" for what a classicist might call a constructive integer

and put aside, at least for now, the problem of what would be an appropriate temm

for what is classically called an integer (assuming that the classical notion of
an integer is indeed viable).

Thus we come to the crucial question, "What is an integer?" As we have al- b

ready seen, the question is badly phrased. We are really looking for a definition
of an integer that will be an efficient tool for developing the full content of
mathematics. Since it is clear that we always work with representations of

integers, rather than integers themselves (whatever those may be}, we are really

trying to define what we mean by a representation of an integer. Again, an L
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integer is represented only when some intelligent agent constructs the repre-
sentgtion, or establishes the convention that some artifact constitutes a repre-
sentation. Thus in its final version the question is, "How does one represent
an integer?" In practice we shall not be so meticulous as all tﬁis in our use
of language.- We shall simply speak of integers, with the understanding that-we
are really speaking of their representations. This causes no harm, because.the
original concept of an integer, as something invariant standing behind all of
its representations, has just been seen to be superfluous. Moreover we shall

t not constantly trouble to point out that (representations of) integers exist

1 only by virtue of conventions established -by groups of intelligent beings. After
this preliminary chatter, which may seem to have been unnecessary, we present

+ our definition of an integer, dignified by the title of the

Fundamental Constructivist Thesis

Every integer can be converted in principle to decimal form by a finite,

purely routine, process.

Note the phrase "in principle". It means that although we should be able
to program a computer fo produce the decimal form of any given integer, there

are cases in which it would be naive to run the program and wait around for the

resuit.

Everything else about integers follows from the above thesis plus the rules

' of decimal arithmetic that we learned in elementary school. Two integers are equal

if their decimal representations are equal in the usual sense. The order relations

¥

and the arithmetic of integers are defined in terms of their decimal representations.
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With the constructive definition of the integers, we have begun our study
of the technical implementation of the constructivist philosophy. Our point of
view is to describe the mathematical operations that can be carried out by
finite beings, man's mathematics for short. In contrast, classical mathematics
concerns itself with operations that can be carried out by God. For instance,
the above number Ny is classically a well-defined integer because God can per-
form the infinite search that will determine whether the Riemann hypothesis is
true. As another example, the smart sequences previously discussed may be able
to outwit you and me (or any other finite being}, but they will not be able to
outwit God. That is why statement (*) is true classically but not constructively.

You may think that I am making a joke, or attempting to put down classical
mathematics, by bringing God into the discussion. This is rot true, 1 am doing

my best to develop a secure philosophical foundation, based on meaning rather

than formalistics, for current classical practice. The most solid foundation
available at present seems to me to involve the consideration of a being with
non-finite powers--call him God or whatever you will--in addition to the powers
possessed by finite beings.

What powers should we ascribe to God? At the very least, we should credit
him with Timited omniscience, as described in the following limited principle
of omniscience (LPO for short): If {"k} is any sequence of integers, then
ejther ne = 0 for all k or there exists a k with n # 0. By accepting
LPO as valid, we are saying that the being whose capabilities our mathematics
describes is able to search through a sequence of integers to determine whether
they all vanish or not.

Let us return to the technical developemnt of constructive mathematics,

since it is simpler, and postpone the further consideration of classical
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mathematics until later. Our first task is to develop an appropriate language
to descrjbe the mathematics of finite beings. For this we are indebted to
Brouwer. (See references [1], [6 ], [15], [20], and [21] for a more complete
exposition than we are able to give here.) Brouwér remarked that the meanings
customarily assigned to the terms "and", "or", "not", "implies", "there exists",
and "for all" are not entirely appropriate to the constructive point of view, and
he introduced more appropriate meanings as necessary.
The connective "and” causes no trouble. To prove "A and B"”, we must prove
A and also prove B, as in classical mathematics. To prove "A or B" we must
give a finite, purely routine method which after a finite number of steps either
leads to a proof of A or to a proof of B. This is very different from the
classical use of "or"; for example LPO is true classically, but we are not
entitled to assert it constructively because of the constructive meaning of "or".
The connective "implies" is defined classically by taking "A implies B"
| to mean "not A or B". This definition would not be of much value constructively.
ﬁ Brouwer therefore defined "A implies B" to mean that there exists an argument
i which shows how to convert an arbitrary proof of A into a proof of B. To take
!an example, it is clear that "{(A implies B} and (B 1implies C)} implies
(A implies C)" 1is always true constructively; the argument that converts
arbitrary proofs of "A 1implies B" and "B implies C" into a proof of "A
i1‘mph‘es C" 1is the following: given any proof of A, convert it into a proof
Eof C by first converting it into a proof of B and then converting that proof
:into a proof of C.
: We define "not A" to mean that A 1is contradictory. By this we mean

.that it is inconceivable that a proof of A will ever be given. For example,

"not 0 = 1" 4s a true statement. The statement “0 = 1" means that when the




numbers "0 and “1" are expressed in decimal form, a mechanical comparison
of the usual sort checks that they are the same. Since they are already in
decimal form, and the comparison in question shows they are not the same, it is
impossibie by correct methods to prove that they are the same. Any such proof
would be defective, either technically or conceptually. As another example, "not
(A and not A)" 1is always a true statement, because if we prove not A it is
impossible to prove A--therefore, it is impossible to prove both.

Having changed the meaning of the connectives, we should not be surprised
to find that certain classically accepted modes of inference are no longer
correct. The most important of these is the principle of the excluded middle--"A
or not A". Constructively, this principle wouid mean that we had a method which
in finitely many, purely routine, steps would lead to a proof of disproof of an
arbitrary mathematical assertion A. Of course we have no such method, and no-
body has the least hope that we ever shall. It is the principle of the excluded
middle that accounts for almost all of the important unconstructivities of
classical mathematics. Another incorrect principle is “(not not A) implies
A". In other words, a demonstration of the impossibility of the impossibility
of a certain construction, for instance, does not constitute a method for
carrying out that construction.

I could proceed to 1ist a more or less complete set of constructively valid
rules of inference involving the connectives just introduced. This would be
superfiuous. Now that their meanings have been established, the rest is common

sense. As an exercise, show that the statment
"{A>0=1) «+ not A"

is constructively valid.



~15~

The classical concept of a set as a collection of objects from some pre-
existent universe is clearly inappropriate constructively. Constructive mathe-
matics does not postulate a pre-existent universe, with objects lying around
waiting to be collected and grouped into sets, Tike shells on a beach. The
entities of constructive mathematics are-called into ‘being by the constructing
intelligence. From this point of view, the very question "What is a set?" is
! suspect. Rather we should ask the question, "What must one do to construct a

. set?". When the question is posed this way, the answer is not hard to find.

Definition. To construct a set, one must specify what must be done to
construct an arbitrary element of the set, and what must be done to prove two

. arbitrary elements of the set are equal. Equality so defined must be shown to

be an equivalence relation.

As an example, let us construct the set of rational numbers. To construct

a2 rational number, define integers p and q and prove that q # 0. To prove

that the rational numbers p/q and py/qy are equal, prove P4y = Py4.
While we are on the subject, we might as well define a function f : A - B.
lllt is a rule that to each element x of A associates an element f(x) of B,

|equa1 elements of B being associated to equal elements of A.

The notion of a subset AO of a set A is also of interest. To construct
!an element of Ao, one must first construct an element of A, and then prove
that the element so constructed satisfies-certain additional conditions,
characteristic of the particular subset AO. Two elements of AO are equal

if they are equal as elements of A.

b

Contrary to classical usage, the scope of the equality relation never extends

L
{beyond a particular set. Thus it does not make sense to speak of elements of
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different sets as being equal, unless possibly those different sets are both
subsets of the same set. This is because for the constructivist equality is a
convention, whose scope is always a given set; all this is conceptually quite 1
distinct from the classical concept of equality as identity. You see now why the
constructivist is not forced to resort to the artifice of equivalence classes. ;
After this long digression, consider again the quantifiers. Let A(x} be
a mathematical assertion depending on a parameter X ranging over a set S. To
prove "¥xA{x)", we must give a method which to each element x of S associates
a proof of A(x). Thus the meaning of the universal quantifier "V¥" is
essentially the same as it is classically.
We expect the existential quantifier "3", on the other hand, to have a new
meaning. It is not clear to the constructivist what the classicist means when he .

4
says "there exists". Moreover, the existential quantifier is just a glorified

P —

version of "or", and we know that a reinterpretation of this connective was
necessary. Let the variable x rangé over the set S. Then to prove "3IxA(x)"
we must construct an element Xg of S, according to the principles laid down
in the definition of S, and then prove the statement “A(xo)".

Again, certain classical uses of the quantifiers fail constructively. For
example, it is not correct to say that "not ¥xA(x) implies 3x not A(x)."
On the other hand, the implication "not 3xA(x) dimplies V¥x not A(x)" is
constructively valid. I hope all this accords with your common sense, as it

does with mine.

Perhaps you see an objection to these developments--that they appear to
violate constructivist principlie (D) above. By accomodating our terminology
to the mathematics of finite beings, have we not replaced the classical system,

that does not permit the systematic development of constructive meaning, by a
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system that does not permit the systematic development of classical meaning? In

my opinion the exact opposite is true--the constructive termfnology just introduced
affords as good a framework as is presently available for expressing the content of
classical mathematics.

If you wish to do classical mathematics, first decide what non-finite attributes
you are willing to grant to God. You may wish to grant him LPO and no others. Or
you may wish to be more generous and grant him EM, the principle of the excluded
middle, possibly augmented by some version of the axiom of choice. When you have
made your decision, avail yourself of all the apparatus of the constructivist, and.
' augment it by those additional powers (LPO or EM or whatever) that you have granted
|to God. Although you will be able to prove more theorems than the constructivist
will, because your being is more powerful than his, his theorems will be more
meaningful than yours. Moreover to each of your theorems he will be able to
associate one of his, having exactly the same meaning. For example, if LPO is
the only non-finite attribute of your God, then each of your theorems "A" he will
restate and prove as "LPO implies A". Clearly the meaning will be preserved. On
the other hand, if he proves a theorem "B", you will also be able to prove "B",

Ibut your "B" will be less meaningful than his. The classical interpretation of
feven such simple results as Goldbach's conjecture is weaker than the constructive
interpretation. In both cases the same phenomena--the results of certain finitely
performable computations--are predicted, but the degree of conviction that the

predicted phenomena will actually be observed is greater in the constructive case,

ecause to trust the classical predictions one must believe in the theoretical

alidity of the concept of a God having the specified attributes, whereas to trust
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the constructive predictions one must only believe in the theoretical validity of
the concept of a being who is able to perform arbitrarily involved finite operatio

It would thus appear that even a constructive proof of such a result as “the
number of zeros in the first n digits of the decimal expansion of II does not
exceed twice the number of ones" would Jeave us in some doubt as to whether the
prediction is correct for any particular value of n, say for n = 1000. We have
brought mathematics down to the gut level. My gqut tells me to trust the construct
prediction and be wary of the classical prediction. 1 see no reason that yours
should not tell you to trust both, or to trust neither.

In common with other constructivists, I also have gut feelings about the
relative merits of the classical and constructive versions of those results which,”
unlike Goldbach's conjecture, assert the existence of certain quantities. If we
let "A" be any such result, with the constructive interpretation, then the con-
structive version of the corresponding classical result wiil be (for instance)
“LPQ - A", as we have seen. My feeling is that it is Tikely to be worth whatever
extra effort it takes to prove "A" rather than "LPO -+ A".

The Tinguistic developments I have outlined could be taken as the basis for
a formalization of constructive (and therefore of classical) mathematics. So as
not to create the wrong impression, I wish to emphasise again certain points that
have already been made,

Formalism
The devil is very neat. It is his pride
To keep his house in order. Every bit
O0f trivia has its place. He takes great pains
To see that nothing ever does not fit. ‘
And yet his guests are queasy. 'All their food,
Served with a flair and pleasant to the eye,

Goes through 1ike sawdust. Pity the perfect host:
The devil thinks and thinks and he cannot cry.
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Constructivism
Computation is the heart
Of everything we prove.
Not for us the velvet wisdom
0f a softer love.
If Aphrodite spends the night,
Let Pallas spend the day.

When the sun dispels the stars
Put your dreams away.

There are at least two reasons for developing formal systems for constructive
mathematics. First, it is good to state as concisely and systematically as we are
able some of the objects, constructions, terminology, and methods of proof. The
development of formal systems that catch these aspects of constructive practice
- should help to sharpen our understanding of how best to organize and communicate
the subject. Second and more important, informal mathematics is the appropriate
lanquage for communicating with people, but formal mathematics is more appropriate
for communicating with machines. Modern computer languages (see the report [30],
for example), while rich in facilities, seem to be lacking in philosophical scope.
It might be worthwhile to investigate the possibility that constructive mathematics
would afford a solid philosophical basis for the theory of computation, and con-
structive formalism a point of departure for the development of a better computer
language. Certainly recursive function theory, which has played a central role in
the philosophy of computation, is inadequate to the task.

The development of a constructive formalism at any given level would seem to
be no more difficult than the development of a classical formalism at the same

level. See [17], [18], [20], [21], [22], and [27] for examples. For a discussion

of constructive formalism as a computer language see [ 2 ].



Let us return to the technical development of constructive mathematics, and
ask what is meant constructively by a function f : Z-+ Z (where Z {is the set
of integers). We improve the classical treatment right away-instead of talking
about ordered pairs, we talk about rules. Our definition takes a function
F:Z-7Z tobe arule that associates to each (constructively defined)} integer
n a {(constructively defined) integer f(n), equal values being associated to
equal arguments. For a given argument n, the requirement that £(n) be con-
structively defined means that its decimal form can be computed by a finite, purely
routine process. That's all there is to it. Functions f : Z-+Q, f : Q = Q,
F:7 - Q are defined similarly. (Here Q is the set of rational numbers and
7" the set of positive integers.} A function with domain 7 s called a
sequence, as usual.

Now that we know what a sequence of rational numbers is, it is easy to define ,
a real number. A real number is a Cauchy sequence of rational numbers! Again, I
have improved on the classical treatment, by not mentioning equivalence classes.

I shall never mention equivalence classes. To be sure we completely understood
this definition, let us expand it a bit. Real numbers are not pre-existent
entities, waiting to be discovered. They must be constructed. Thus it is better
to describe how to construct a real number, than to say what it is. To construct

a real number, one must

(a) construct a sequence {x,} - of rational numbers
(b) construct a sequence {Nn} - of integers
(c) prove that for each positive integer n we have
1 " .
jl <+ whenever 1= N and jzN.
Of course, the proof (c) must be constructive, as well as the constructions (a)

and {(b).

Ix; = x
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Two real numbers . {an} and .£bn}- (the corresponding convergence parameters
{b) and proofs_(c) are assumed without explicit mention) are said to be equal if
for each positive integer k there exists a positive integer Nk such that
[an - bn| = %— whenever n = N . It can be shown that this notion of equality is
an equivalence relation. Addition and multiplication of real numbers are also
defined in the same way as they are defined classically. The order relation, on
the other hand, is more interesting. If a = {a,} and b ='{bn}‘ are real
numbers, we define a < b to mean that there exist positive integers M and N
such that a, = bn - %~ whenever n > N. Then it is easily shown that a <b
and b<c¢ imply a<c¢, that a<b implies a - c <b - ¢, and so forth.
Some care must be exercised in defining the relation. =. We could define a =b
to mean that either a <b or a=Db. An alternate definition would be to
define it to mean that b < a 1is contradictory. We shall not use either of
these, although our definition turns out to be equivalent to the Tatter.
PDefinition. a <b means that for each positive integer M there exists
a positive integer N such that b, = a, - %- whenever n = N.

To make the choice of this definition plausible, I shall construct a certain

real number H.
- ' -n
H :E: anZ
n=1

where a, = 0 1in case every even integer between 4 and n 1is the sum of two

primes , -and a, = 1 otherwise. (More precisely, H is given by the Cauchy

]

= 2: a Z'k, and the sequence {Nn} - of convergence

sequence {an}; with a, & X
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parameters, where Nn = n.) Clearly we wish to have H = 0. It certainly is
according to the definition we have chosen. (The real number 0 of course is
the Cauchy sequence of rational numbers all of whose terms are (.} On the other
hand, we would not be entitied to assert that H= 0 1if we had defined H=z= O
to mean that either H> 0 or H =0, because the assertion "H>0 or H=0"
means that we have a finite, purely routine method for deciding which; in this
case, a finite, purely routine method for proving or disproving Goldbach's
conjecture!

Most of the usual theorems about = and < remain true constructively,

with the exception of trichotomy. Not only does the usual form "a <b or a=b

or a>b" fail, but such weaker forms as "a <b or a=b", or even "a=b

.or a=z=b" fail as well. For example, we are not entitled to assert "0 <H

-]

H or 0> H". If we consider the closely related nunber H” = z:' a2n(-2rﬂ
n=1

1]

or 0
we are not even entitled to assert that "H* =0 or H” =Q".

Since trichotomy is so fundamental, we might expect constructive mathematics
to be hopelessly enfeebled because of its failure. The situation is saved, because
trichtomy does have a constructive version, which of course is considerably weaker
than the classical.

Theorem. For arbitrary real numbers a, b, and ¢, with a <b, either ¢ > a
or ¢ <b.

Proof. Choose integers M and NO such that a, = bn - %— whenever

n= NO. Choose integers Na’ Nb’ and Nc such that |an - am1 = (f:?l*‘l)'T whenever

n,m= N [bn - bml = (GM)'] whenever n, m= N, |cn - le < (SM)'] whenever

a!

n, m= NC. Set N = max {NO, Na, Nb’ Nc}.- Since ay, bN, and cy are all
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rational numbers, either Cy < %{aN + bN) or cy = %{aN + bN)' Consider first

-1

the case oy = %{aN + bN). Since ay = bN -~ M, it follows that ay = ¢y - (ZM)'l.

For each n = N we therefore have

ay * (6M)~! s ey - (M)~ & (6M)"!

u
A

A

c, + (M) - (a7 (e)T = e - @)

Therefore a < c¢. In the other case, oy < %{aN + bN), it follows similarly that -
¢ «<b, This completes the proof of the theorem.

Do not be deceived by the use of the word “choose" in the above proof, which
is simply a carry-over from classical usage. No choice is involved, because M
and NO, for instance, are fixed positive integers, defined expiicitly by the
proof of the inequality a < b. Of course we could decide to substitute other
values for the original values of M and NO’ if we desired, so some choice is
possible should we wish to exercise it. If we do not expiicitly state what
thoice we wish to make, it will be assumed that the values of M and NO given
by the proof of a < b are chosen.

The number H, which is constructively a well-defined real number, is
classically rational, because if the Goldbach conjecture is true then H = 0,
and if the conjecture is false then H = 2'"+1, where n s the first even
integer for which it fails., We are not entitled to assert constructively that
H is rational: if it is rational, then either H =0 or H # 0, meaning that
either Goldbach's conjecture is true or else it is false; and we are not entitled

to assert this constructively, until we have a method for deciding which. We are

not entitied to assert H is irrational either, because if H is irrational,



then H # 0, therefore Goldbach's conjecture is false, therefore H 1is the

2‘"+]. a contradiction! Thus H cannot be asserted to be

rational number
rational, although its irrationality is contradictory. (I am 9indebted to Halsey
Royden for this amusing observation.)

It is easy to prove the existence of many irrational numbers, by proving
the uncountability of the real numbers, as a corcllary of the Baire category
theorem. For the present, let us merely remark that VZ is irrational. Of

course, V2 can be defined by constructing successive decimal approximations.

It is therefore constructively well-defined. The classical proof of the

) P4
irrationality of V2 shows that if g— is any rational number then E§-¢ 2.

q
2
Since both 22. and 2 can be written with denominator q2, it follows that
q

v

2
- V2l (B4 v = [Py - 2

_1?
g q

Since clearly g-¢ VvZ in case %—< 0 or §-> 2, to show that E—# VZ we may

assume 0 = E—s 2. Then

- -1 1 1
RGN AR SECAL I S X

Therefore V2 ¢ %u Thus V2 is {constructively) irrational.

The failure of the usual form of trichotomy means that we must be careful
in defining absolute values and maxima and minima of real numbers. For example,

if x= fx.} - is a real number, with sequence {Nn}- of convergence parameters,
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then |x| 1is defined to be the Cauchy sequence {|xn|}- of rational numbers
(with sequence {Nn}- of convergence parameters). Similarly, min {x, y}- is
defined to be the Cauchy sequence {min{xn, yn}}:=1, and max {x, y} - to be
{max{x s y }},.7-

This definition of wmin, in particular, has an amusing consequence. Consider

the equation
X~ = xH” = 0,

Clearly 0 and the number H’ are solutions. Are they the only solutions? It
depends on what we mean by "only". Clearly min {0, H*} 1is a solution, and we
are unable to identify it with either 0 or H-. Thus it is a third solution!
The reader might like to amuse himself looking for others. This discussion
incidentally makes the point that if the product of two real numbers is 0 we
are not entitled to conclude that one of them is 0. (For example, x(x - H”} = 0
does not imply that x =0 or x - H” = 0: set Xx = min {0, H"}.)

The const}uctive real number system as 1 have described it is not accepted
by all constructivists. The intuitionists and the recursive function theorists
have other versions.

For Brouwer, and his followers (the intuitionists), the constructive real
numbers described above do not constitute all of the real number system. In
addition there are incompletely determined real numbers, corresponding to
sequences of rational numbers whose terms are not specified by a master algorithm.
Such sequences are called "free-choice sequences", because the creating subject,

who defines the sequence, does not completely commit himself in advance but
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allows himself some freedom of choice along the way in defining the individual
terms of the sequence.

There seem to be at least two motivations for the introduction of free-
choice sequences into the real number system. First, since each constructive
real number can presumably be described by a phrase in the English language, on
superficial consideration the set of constructive real numbers would appear to
be countable. On closer consideration this is seen not to be the case: Cantor's
uncountability theorem holds, in the following version. If {xn} is any
sequence of real numbers, there exists a real number Xx with x # Xy for all
n. Nevertheless it appears that Brouwer was troubled by a certain aura of the
discrete clinging to the constructive real number system R. Second, every func-
tion anyone has ever been able to construct from R to R has turned out to be
continuous, in fact uniformiy continuous on bounded subsets. (The function f
that is 1 for x=0 and 0 for x <0 does not count, because for those
real numbers x for which we have no proof of the statement "x > O, or X< o
we are unable to compute f(x).) Brouwer had hopes of proving that every func-
tion from R to R is continuous, using arguments involving free choice
sequences. He even presented such a proof [7]. It is fair to say that almost
nobody finds his proof intelligible. It can be made intelligible by replacing
Brouwer's arguments at two critical points by axioms, that Kleene and Vesley
[21] call "Brouwer's principle” and "the bar theorem”. My objection to this
is, that by introducing such a theorem as "all f : R -+ R are continuous” in
the guise of axioms, we have lost contact with numerical meaning. Paradoxically
this terrible price buys little or nothing of real mathematical value. The
entire theory of free-choice sequences seems to me to be made of very tenuous

mathematical substance.
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If it is fair to say that the intuitionists find the constructive concept
of a sequence generated by an algorithm too precise to adequately describe the
real number system, the recursive function theorists on the other hand find it
too vague. They would 1ike to specify more precisely what is méant by an
algorithm, and they have a candidate .in the notion of a recursive function.

They admit only sequence of integers or rational numbers that are recursive (a
concept we shall not define here: see [20] for détails). Their reasons are,
that the concept is more precise than the naive concept of an algorithm, that
every naively defined algorithm has turned out to be recursive, and it seems
unlikely we shall ever discover an algorithm that is not recursive. This re-
quirement that every sequence of integers must be recursive is wrong on three
fﬁndamenta] grounds. First and most important, there is no doubt that the naive
concept is basic, and the recursive concept derives whatever importance it has
from some presumption that every algorithm will turn out to be recursive.
Second, the mathematics is complicated rather than simplified by the restriction
to recursive sequences. If there is any doubt as to this, it can be resolved

by comparing some of the recursivist developments of elementary analysis with
the constructivist treatment of the same material. Even if one is oriented to
running material on a computer, the recursivist formulation would constitute

an obstacle, because very likely the recursive presentation would be translated
_into computer language by first translating into common constructive terminology
(at least mentally) and then translating that into the language of whatever
computer was being used. Third, no gain in precision is actually achieved.

One of the procedures for defining the value of a recursive function is to
search a sequence of integers one by one, and choose the first that is non-zero,

having first proved that one of them is non-zero. Thus the notion of a recursive
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function is at Teast as imprecise as the notion of a correct proof. The latter
notion is certainly no more precise than the naive notion of a (constructive)
sequence of integers.

The desire to achieve complete precision, whatever that is, is doomed to
frustration. What is really being sought is a way to guarantee that no dis-
agreements will arise. Mathematics is such a complicated activity that dis-
agreements are bound to arise. Moreover, mathematicians will always be tempted
to try out new ideas that are so complicated or innovative that their meaning
is guestionable. What is important is not to develop some framework, such as
recursive function theory, in the vain hope of forestalling questionable
innovations, but rather to subject every development to intense scrutiny (in
terms of the meaning, not on formal grounds).

Recursive functions come into their own as the source of certain counter-
examples in constructive mathematics, the most famous being the word-problem
in the theory of groups. Since the concept of a {constructively) recursive
sequence is narrower than the concept of a (constructive) sequence, it is
easier to demonstrate that there exist no recursive sequences satisfying a
given condition G. Such a demonstration makes it extremely unlikely that a
(constructive) sequence satisfying G will be found without some radically
new method for defining sequences being discovered, a discovery that many view
as almost out of the question.

Although some every beautiful counter-examples have been given by means
of recursive functions, they have also been used as a source of counter-examples
in many situations in which a prior technique due to Brouwer [20] would have
been both simpler and more convincing. Brouwer's idea is to counterexample

a theorem A by proving A - LP0. Since nobody seriously thinks LPO will
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ever be proved, such a counter-example affords a good indication that A will
never be proved. As an instance, Brouwer has shown that the statement that
every bounded monotone sequence of real numbers converges implies LPO.

Another source of Browerian counter-examples is the statement LLPO (for
the "Tesser limited principle of omniscience"), that if {n} is any sequence
of integers, then ejther the first non-zero term, if one exists, is even or else
the first non-zero term, if one exists, is odd. Clearly LPO -+ LLPO, but there
seems to be no way to prove that LLPO - LPO. Nevertheless, we are just as
sceptical that LLPO will ever be proved. Thus A - LLPQ is another type of
Brouwerian counter-example for A. As an instance, the statement that "either
X2 0 or x=0 for each real number x" implies LLPO, in fact is equivalent
to it.

Thus we are so sceptical that the statements [P0, LLPO, and their i1k will
ever be proved that we use them for building counter-examples. The strongest
counter-example to A would be to show that a proof of A 1is inconceivable,
in other words to prove "not A", but proving "A -+ LPO" or "A -+ LLPO" is almost
as good. In fact, I personally find it inconceivable that LPO {or LLPO for
that matter) will ever be proved. Nevertheless I would be reluctant to accept
"not LPO" as a theorem, because my belief in the impossibility of proving LPO
is more of a gut reaction prompted by experience than something I could
communicate by arguments I feel would be sure to convince any objective, well-
informed, and intelligent person. The acceptance of “not LPO" as a theorem
would have one amusing consequence, that the theorems of constructive mathematics
would not necessarily be classically valid (on a formal level) any longer. It
seems we are doomed to live with "LP0" and "there exists a function from
[0, 1] to R that is not uniformly continuous" and similar statements, of whose

impossibilities we are not quite sure enough to assert their negations as theorems.
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The classical paradoxes are equally viable constructively, the simplest
perhaps being “"this statement is false.” The concept of the set of all sets
seems to be paradoxical (i.e., Tead to a contradiction) constructively as well
as classically. Informed common sense seems to be the best way of avoiding
these paradoxes of self reference. Their spectre will always be lurking -over
both classical and constructive mathematics. Hermann Weyl made the meticulous
avoidance of self reference the basis of a whole new development of the real
number system (see Weyl [32]) that has since become known as predicative mathe-
matics. Weyl later abandoned his system in favor of intuitionism. I see no
better course at present than to recognise that certain concepts are inherently
inconsistent and to familiarize oneself with the dangers of self-reference.

Not only is there insufficient time, but I would not be competent to review
all of the recent advances of constructive mathematics, including those'of
ad hoc constructivism as well as those taking place under constructivist
philosophies at variance with those that I have presented here, for example
the recursivist constructivism of Markov and his school in Russia. (I have
been told that some of the recent advances in differential equations have
tended to present that subject in a more constructive light. Perhaps Felix
Browder will give us some information about those developments.) I shall
restrict myself in what remains to selected developments with which I am
familiar, that seem to me to be of special interest.

Brouwer [ 6] was the first to develop a constructive theory of measure
and integration, and the intuitionist tradition (see [19] and [31] for instance)
in Holland carried the development further, working with Lebesgue measure on
R". In [1] 1 worked with arbitrary measures (both positive and negative) on

Tocally compact spaces, recovering much of the classical theory. The Daniell
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integral was developed in full generality in [ 5]. The concept of an integra-
tion space postulates a set X, a linear subset L of the set of all partially-
defined functions from X to R, and a linear functional I from L to R
having the properties

(1) if f elL, then |f]l ¢L and min {f, 1} €L

(2) if f el and f, ¢ L for each n, such that f, = 0 and

2:' I(fn) converges to a sum that is less than I{f), then
n=1

> .fn(x) converges and is less than f(x), for some x 1in
n=1

the common domain of f and the functions fn

(3) I(p) #0 forsome p el

(4) 1im I(min {f, n})} = I(f) and Tim I{min {|f|, n'l}) =0 for
e

Moo |

all f in L.
We define L] to consist of all partially defined functions f from X

to R such that there exists a sequence {fn}- of elements of L such that
(a) 2 I{|f 1) converges and (b) > f.(x) = f(x) whenever 2 [, (x)]
n=1 n=1 n=1

converges.

It turns out to be possible to extend I to Ly» in such a way that
(X, L], I) also satisfy the axioms, and in addition L] is complete under
the metric po(f, g) = I{|f - g|).

The only real problem in recovering the c¢lassical Daniell theory is posed

by the classical result that if f ¢ Ly then the set At = {x € X : f{x) = t} -
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is integrable for all t > 0 (in the sense that its characteristic function

Xt’ defined by Xt(x) =1 if f(x)=t and Xt(x) =0 if f(x) <t, is in

LT)‘ The constructive version is that At is integt§b1e for all except
countably many t > 0. The proof of this requires a rather complex theory,
called the theory of profiles. Y. K. Chan informs me that he has been able to
simplify the theory of profiles considerably. He has also effected a con-
siderable simplification in another trouble-spot of [ 5], the proof that a non-
negative 1inear functional I on the set L = C(X) of continuous functions
on a compact space X satisfies the axioms for an integration space presented
above. (Axiom (2) is the troublemaker.)

Constructive integration theory affords the point of departure for some
recent constructivizations of parts of probability theory. There is no
(constructive) way to prove even the simplest cases of the ergodic theorem,
such that if T denotes rotation of a circle X through an angle «, then

for each integrable function f : X +[R and almost all x in X, the averages

N
fyl) = & D ™)

n=1

converge. (The difficulty comes about because we are unable to decide for
instance whether a = 0.) One way to recover the essence of the ergodic theorem
constructively, and in fact deepen it considerably, is to show that the sequence
{fN} satisfies certain integral inequalities, analogous to the upcrossing
inequalities (see [ 14]) of martingale theory. This was done in the context of

the Chacon-Ornstein ergodic theorem in [ 1], and even more generally in [ 3].
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John Nuber [23] takes another route. He presents sufficient conditions,
close to being necessary, that the sequence {fN}- actually converges a.e., in
the context of the classical Birkhoff ergodic theorem. More recently, in an
unpublished manuscript, he has generalized his conditions to the context of the
classical Chacon-Ornstein theorem. >

Y. K. Chan has done much to constructivize the theory of stochastic processes.
His paper [10] unifies the two classically distinct cases of the renewal theorem
into one constructive result. His paper [12] contains the following theorem:

Theorem. Let M and o be probability measures on R, and fy and f,

their characteristic functions (Fourier transforms). Let g be a continuous
function on R, with |g| = 1. Then for every & > 0 there exist 6 >0 and

8 > 0, depending only on e and the moduli of continuity of f], f2, and g,

such that
|fgdu-[-fgdp2|<a

whenever |[f; - f,] <6 on [-6, 6].

A simple corollary is Levy's theorem, that if {un}- is a sequence of
probability measures on [R, whose characteristic functions {fn} converge
uniformly on compact sets to some function f, then W, converges weakly to
a probability measure i whose characteristic function is f.

Levy's theorem is classically an important tool for proving convergence
of measures. Chan shows that this is also true constructively, by using it
to get constructive proofs of the central limit theorem and of the Levy-

Khintchine formula for infinitely divisible distributions.
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Chan's papers [ 9] and [11] are primarily concerned with the problem of
constructing a stochastic process. In [g] he gives a constructive version of
KoTmogorov's extension theorem. In [11], he constructivizes the classical
derivation of a time homogeneous Markov process from a strongly continuous semi-
group of transition operators. In addition he proves Ionescu Tulcea's theorem
and a supermartingale convergeﬁce theorem.

H. Cheng [13] has given a very pretty version of the Riemann mapping theorem
and Caratheodory's results on the convergence of mapping functions. He
defines a simply connected proper open subset U of the complex plane € to
be mappable relative to some distinguished point Zy of U if for each
¢ > 0 there exist finitely many points Zys voe s Zp in the complement of U
such that any continuous path beginning at z, and having distance = ¢ from
each of the points Zys wer s Zp lies entirely in U. He shows that mappability
is necessary and sufficient for the existence of a mapping function. He goes on
to study the dependence of the mapping function on the domain, by defining natural
metrics on the space D of domains (with distinguished points zo) and the space
M of mapping functions, and proving that the function » : D+ M that
associates to each domain its mapping function is a homeomorphism. He thus
extends and constructivizes the classical Caratheodory results. Many of his
estimates are similar to those developed by Warschawski in his studies of
the mapping function.

The problem of constructivizing the classical theory of uniformization is
still open. (Even reasonable conjectures seem difficult to come by.) So is the
problem of (constructiye]y) constructing canonical maps for multiply -connected

domains, as far as I know. .



It is natural to define two sets to have the same cardinality if they are
in one-one correspondence. The constructive theory of cardinality seems hope-
lessly involved, due to the constructive failure of the Cantor-Bernstein lemma,
and for other reasons as well.

Progress has been made however in constructivizing the theory of ordinal
numbers. Brouwer [ 8] defines ordinals to be ordered sets that are built up
from non-empty finite sets by finite and countable addition. F. Richman [26]
gives a more general definition. Simple in appearance, his definition con-
structivizes the property of induction in just the right way. An ordinal number

{or well-ordered set) is a set S with a binary relation < such that
(1) if a<b and b<c, then a<c

(2) one and only one of the relations a <b,b<a,a=b holds

for given elements & and b of S

(3) let T be any subset of S with the property that every element
b of S, such that a ¢ T for each a in S with a <b,

belongs to T; then T = S.

Richman shows that each Brouwerian ordinal satisfies (1), (2), and (3).
He gives examples of ordinals (in his sense) that are not Brouwerian. He shows
that every subset of an ordinal is an ordinal (under the induced order). He
uses his theory to constructivize the classical theorems of Zippin and Ulm
concerning existence and uniqueness of p-groups with prescribed invariants.

The above examples might give the impression that the constructivization
of classical mathematics always proceeds smoothly. 1 shall now give some

other examples, to show that in fact it does not.
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In [ 1] the Gelfand theory of commutative Banach a1gebyas was construc-
tivized to a certain extent. The theory has to be considered unsatisfactory,
not because the classical content is not recovered (it is), but because it is
so ugly. It is almost certain that a prettier constructivization will someday
be found.

Stolzenberg [28] gives a meticulous analysis of some of the considerations
involved in constructivizing a particular classical theory, the open mapping
theorem and related material. Again, an incisive constructivization is not
obtained.

J. Tennenbaum [29] gives a deep and intricate constructive version of
Hilbert's basis theorem. Consider a commutative ring A with unit. It
would be tempting to call A (constructively) Noetherian if for each sequence
{a,} of elements of A there exists an integer N such that for n= N the

n

element a_ 1is a linear combination of 8ys +0- 5 @ with coefficients in

n n-1

A. This notion would be worthless--not even the ring of integers is Noetherian
in this sense. In case A 1is discrete (meaning that the equality relation
for A is decidable), the appropriate constructive version of Noetherian seems
to be the following {as given in [29]).

Definition. A sequence {an} of elements of A is almost eventually
zero if for each sequence {nk}- of positive integers there exists a positive

integer k such that a_=0 for k=sn=k+ -

n
Definition. A basis operation r for A is a rule that to each finite

sequence ay, ... s a, of elements of A 'assigns an element r(a1, e an)

of A of the form a_ + Mapt e N g3 s

Befinition. A is Notherian if it has a basis operation r such that

where each A belongs to A..

for each sequence {an} of elements of A the associated sequence

{r(a1, cee s an)}- is almost eventually zero.
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Tennenbaum proved the appropriateness of his version of Noetherian by
checking out the standard cases and proving the Hilbert basis theorem. He also
extended His definition and results to the case of a not-necessarily discrete
ring A. The theory in that case is so complex that it cannot be considered
satisfactory.

In spite of the pioneering efforts of Kronecker, and continued work by many
algebraists, resulting in many deep theorems, the systematic constructivization
of algebra would seem hardly to have begun. The problems are formidable. A
very tentative suggestion is that we should restrict our attentions to algebraic
structures endowed with some sort of topology, with respect to which all opera-
tions and maps are continuous. The work of Tennenbaum guoted above might provide
some ideas of how to accomplish this. The task is complicated by the circum-
gtance that no completely suitable constructive framework for general topology
has yet been foupd. ‘

The constru&tivization of general topology is impeded by two obstacles.
First, the classical notion of a topological space is not constructively viable.
Second, even for metric spaces the classical notion of a continuous function is
not constructively viable; the reéson is that there is no constructive proof
that a (pointwise) continuous function from a compact {complete and totally
bounded) metric space to R is uniformly continuous. Since uniform continuity
for functions on a compact space is the useful concept, pointwise continuity
(no Tonger useful for proving uniform continuity) is left with no useful
function to perform. Since uniform continuity can not be formulated in the
context of a general topological space, the latter concept also is left with

no useful function to perform.



In [ 1] I was able to get along by working mostly with metric spaces and
using various ad hoc definitions of continuity: one for compact spaces, an-
other for locally compact spaces, and anqther for the duals of Banach spaces.
The unpublished manuscript [4 ] was an attempt to develop constructive general
topology systematically. The basic idea is that a topological space should
consist of a set X, endowed with both a family of metrics and a family of
boundedness notions, where a boundedness notion on X dis a family S of sub-
sets of X, (called bounded subsets), whose union is X, closed under finite
unions and the formation of subsets.

For example, let C be the set of all real valued functions f : R -+ R,
bounded and (uniformly) continuous on finite intervals. Each finite interval
.of R induces a metric on € (the uniform metric on that interval). In
addition, there is a natural boundedness notion S. A subset E of C belongs
to S if there exists r >0 such that |f|] =r for all f in E. A
sequence {fn} of elements of C converges to an element f of C if it
converges With respect to each of the metrics on C, and if it is bounded.

The notion of a continuous function from one such space to another, as
given in [ 4], is somewhat involved and will not be repeated here. It was
possible to develop a theory that seems to accomodate the-known examples and
to have certain pleasing functorial qualities, but the theory is somehow not
convincing--for one thing, it is too involved. For another, there is a certain
sort of space~-let us call it a ball space--that does not fit well into the
theory.

Definition. A ball space is a set X, together with a function that to.
each r= 0 and point x of X associate a subset B{(x, r} of X {to be
thought of as the closed ball of radius r about x) satisfying the following

axioms.



(a) B(x, r) ¢B(x,s) if r=s
(b) i B(xs 0) = {X} :
{¢) B{x, r)=n {B{x, s} : s> r}-

(d} if y €B(x, r), then x ¢ B(y, r)
(e) if y eB(x, r) and z ¢ B(y, s), then z ¢ B(x, r + s)
(f} U {B{x, r) : r=0}=X.

L

Duals of Banach spaces are particular instances of ball spaces, as are
various other function spaces.

Algebraic topology, at least at the elementary level, should not be too
difficult to constructivize. There is a problem with defining singylar cohomology
constructively, as pointed out in [2]. Richman [25] points out that the classical
Vietoris homclogy theory is not satisfactory constructively, and he gives a new
version that constructively (and also classically) has certain features that are
more desirable.

I would 1ike to conclude these lectures by discussing some of the tasks
that face constructive mathematics.

Of primary importance is the systematic constructive development of enough
of algebra for a pattern to begin to emerge. Of course, it may be that much
of the classical theory is inherently unconstructivizable, and that constructive
algebra will go its own way. It is too early to tell.

Less critical, but also of interest, is the problem of a convincing con-
structive foundation for general topology, to replace the ad hoc definitions
in current use. It would also be good to see a constructivization of algebraic
topology actually carried through, although I suspect this would not pose the

critical difficulties that seem to be arising in algebra.
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To sum up, the first task is to constructivize as much of existing classical
mathematics as is suitable for constructivization. As this is being done, we
should increasingly turn our attention to questions of the efficiency of our
algorithms, and bridge the gap between constructive mathematics on the one hand
and numerical analysis and the theory of computation on the other. Since con-
structive mathematics is the study of what is theoretically computable, it should
afford a sound philosophical basis for the theory of computation.

Our terminology and technical devices need constant re-examination as to
whether they are the most appropriate tools for extracting the full meaning from
our material. It seems to me that the meaning of implication, in particular,
should be thoroughly studied, and other possible candidates investigated. Such
statements as "(A - B) -~ C" have a rather tenuous meaning, and in many instances
of proofs of such statements, something more is actually being proved. Work of
Godel [17] raises some interesting possibilities about possible re-definitions
of implication, which seem to be very difficult to implement in usable generality,
and which also seem to run counter to natural modes of thought. There seems to
be no reason in principle that we should not be able to develop a viable term-
inology that incorporates more than one meaning for some or all of the quantifiers
and connectives. |

More important than any of these technical problems is the broader problem
of involving ourselves more deeply with the meaning of mathematics at all levels.
This is the simplest and most general statement of the constructivist program,

and the technical developments are intended as a means to that end.
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